基于柬埔寨500 k V线路,结合SL-CAD软件与PLS-CADD软件格式特点,详细研究了两者格式转换的实现方法,在VS环境下编写ORG-PLS程序实现SL-CAD平台到PLS-CADD平台的转换。转换程序的实现,解决了国内设计人员使用PLS-CADD不熟练的弊端,满足...基于柬埔寨500 k V线路,结合SL-CAD软件与PLS-CADD软件格式特点,详细研究了两者格式转换的实现方法,在VS环境下编写ORG-PLS程序实现SL-CAD平台到PLS-CADD平台的转换。转换程序的实现,解决了国内设计人员使用PLS-CADD不熟练的弊端,满足设计在ORG平台开展计算与排位,在PLS-CADD平台校验、出图的要求,避免了因人工编辑而出现的差错,大大提高了勘测设计的工作效率,实现了国内输电线路测量数据处理软件与国际主流线路排位软件的衔接。展开更多
This paper thoroughly investigates the problem of robot self-location by line correspondences. The original contributions are three-fold: (1) Obtain the necessary and sufficient condition to determine linearly the rob...This paper thoroughly investigates the problem of robot self-location by line correspondences. The original contributions are three-fold: (1) Obtain the necessary and sufficient condition to determine linearly the robot's pose by two line correspondences. (2) Show that if the space lines are vertical ones, it is impossible to determine linearly the robot's pose no matter how many line correspondences we have, and the minimum number of line correspondences is 3 to determine uniquely (but non-linearly) the robot's pose. (3) Show that if the space lines are horizontal ones, the minimum number of line correspondences is 3 for linear determination and 2 for non-linear determination of the robot's pose.展开更多
文摘基于柬埔寨500 k V线路,结合SL-CAD软件与PLS-CADD软件格式特点,详细研究了两者格式转换的实现方法,在VS环境下编写ORG-PLS程序实现SL-CAD平台到PLS-CADD平台的转换。转换程序的实现,解决了国内设计人员使用PLS-CADD不熟练的弊端,满足设计在ORG平台开展计算与排位,在PLS-CADD平台校验、出图的要求,避免了因人工编辑而出现的差错,大大提高了勘测设计的工作效率,实现了国内输电线路测量数据处理软件与国际主流线路排位软件的衔接。
基金the National '863' High-Tech Programme of China under the grant No. 863-512-9915-01 and the National Natural Science Foundatio
文摘This paper thoroughly investigates the problem of robot self-location by line correspondences. The original contributions are three-fold: (1) Obtain the necessary and sufficient condition to determine linearly the robot's pose by two line correspondences. (2) Show that if the space lines are vertical ones, it is impossible to determine linearly the robot's pose no matter how many line correspondences we have, and the minimum number of line correspondences is 3 to determine uniquely (but non-linearly) the robot's pose. (3) Show that if the space lines are horizontal ones, the minimum number of line correspondences is 3 for linear determination and 2 for non-linear determination of the robot's pose.