In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb...In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.展开更多
In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space w...In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.展开更多
This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming we...This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming weights and minimize the to-tal relay transmit power,while ensuring users’Qual-ity of Services and preventing the information being eavesdropped at the same time.The problem is a robust optimization problem,because of the imper-fect channel state information from users and relays to the eavesdropper.First the original problem is sim-plified,where the high order robust terms are omit-ted.Then we design an iterative algorithm based on line search,by solving two Quadratically Con-strained Quadratic Programming subproblems and a one-dimensional subproblem.Simulation results indi-cate that the proposed algorithm outperforms the state of the arts.展开更多
The non-quasi-Newton methods for unconstrained optimization was investigated. Non-monotone line search procedure is introduced, which is combined with the non-quasi-Newton family. Under the uniform convexity assumptio...The non-quasi-Newton methods for unconstrained optimization was investigated. Non-monotone line search procedure is introduced, which is combined with the non-quasi-Newton family. Under the uniform convexity assumption on objective function, the global convergence of the non-quasi-Newton family was proved. Numerical experiments showed that the non-monotone line search was more effective.展开更多
It is well known that the line search methods play a very important role for optimization problems. In this paper a new line search method is proposed for solving unconstrained optimization. Under weak conditions, thi...It is well known that the line search methods play a very important role for optimization problems. In this paper a new line search method is proposed for solving unconstrained optimization. Under weak conditions, this method possesses global convergence and R-linear convergence for nonconvex function and convex function, respectively. Moreover, the given search direction has sufficiently descent property and belongs to a trust region without carrying out any line search rule. Numerical results show that the new method is effective.展开更多
In this paper, we present a new line search and trust region algorithm for unconstrained optimization problems. The trust region center locates at somewhere in the negative gradient direction with the current best ite...In this paper, we present a new line search and trust region algorithm for unconstrained optimization problems. The trust region center locates at somewhere in the negative gradient direction with the current best iterative point being on the boundary. By doing these, the trust region subproblems are constructed at a new way different with the traditional ones. Then, we test the efficiency of the new line search and trust region algorithm on some standard benchmarking. The computational results reveal that, for most test problems, the number of function and gradient calculations are reduced significantly.展开更多
In this paper, we extend a descent algorithm without line search for solving unconstrained optimization problems. Under mild conditions, its global convergence is established. Further, we generalize the search directi...In this paper, we extend a descent algorithm without line search for solving unconstrained optimization problems. Under mild conditions, its global convergence is established. Further, we generalize the search direction to more general form, and also obtain the global convergence of corresponding algorithm. The numerical results illustrate that the new algorithm is effective.展开更多
In this paper, the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed, which appears in the study of contact problem in mechanics. We discuss a quadratic programming formulation to the...In this paper, the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed, which appears in the study of contact problem in mechanics. We discuss a quadratic programming formulation to the problem. The resulting problems are nonlinear programs that can be solved by a line search filter-SQP algorithm.展开更多
In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our alg...In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.展开更多
In this paper, we propose a new method which based on the nonmonotone line search technique for solving symmetric nonlinear equations. The method can ensure that the search direction is descent for the norm function. ...In this paper, we propose a new method which based on the nonmonotone line search technique for solving symmetric nonlinear equations. The method can ensure that the search direction is descent for the norm function. Under suitable conditions, the global convergence of the method is proved. Numerical results show that the presented method is practicable for the test problems.展开更多
In this paper, we propose several new line search rules for solving unconstrained minimization problems. These new line search rules can extend the accepted scope of step sizes to a wider extent than the corresponding...In this paper, we propose several new line search rules for solving unconstrained minimization problems. These new line search rules can extend the accepted scope of step sizes to a wider extent than the corresponding original ones and give an adequate initial step size at each iteration. It is proved that the resulting line search algorithms have global convergence under some mild conditions. It is also proved that the search direction plays an important role in line search methods and that the step size approaches mainly guarantee global convergence in general cases. The convergence rate of these methods is also investigated. Some numerical results show that these new line search algorithms are effective in practical computation.展开更多
In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmo...In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.展开更多
In this paper, a new Wolfe-type line search and a new Armijo-type line searchare proposed, and some global convergence properties of a three-term conjugate gradient method withthe two line searches are proved.
To save the calculations of Jacobian,a multi-step Levenberg-Marquardt method named Shamanskii-like LM method for systems of nonlinear equations was proposed by Fa.Its convergence properties have been proved by using a...To save the calculations of Jacobian,a multi-step Levenberg-Marquardt method named Shamanskii-like LM method for systems of nonlinear equations was proposed by Fa.Its convergence properties have been proved by using a trust region technique under the local error bound condition.However,the authors wonder whether the similar convergence properties are still true with standard line searches since the direction may not be a descent direction.For this purpose,the authors present a new nonmonotone m-th order Armijo type line search to guarantee the global convergence.Under the same condition as trust region case,the convergence rate also has been shown to be m+1 by using this line search technique.Numerical experiments show the new algorithm can save much running time for the large scale problems,so it is efficient and promising.展开更多
This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The en...This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero. This new algorithm has more flexibility for the acceptance of the trial step and requires less computational costs compared with traditional filter algorithm. The global and local convergence of the proposed algorithm are given under some reasonable conditions. The numerical experiments are reported to show the effectiveness of the dwindling filter algorithm.展开更多
In this paper,we investigate a parallel subspace correction framework for composite convex optimization.The variables are first divided into a few blocks based on certain rules.At each iteration,the algorithms solve a...In this paper,we investigate a parallel subspace correction framework for composite convex optimization.The variables are first divided into a few blocks based on certain rules.At each iteration,the algorithms solve a suitable subproblem on each block simultaneously,construct a search direction by combining their solutions on all blocks,then identify a new point along this direction using a step size satisfying the Armijo line search condition.They are called PSCLN and PSCLO,respectively,depending on whether there are overlapping regions between two imme-diately adjacent blocks of variables.Their convergence is established under mild assumptions.We compare PSCLN and PSCLO with the parallel version of the fast iterative thresholding algorithm and the fixed-point continuation method using the Barzilai-Borwein step size and the greedy coordinate block descent method for solving the l1-regularized minimization problems.Our numerical results showthatPSCLN andPSCLOcan run fast and return solutions notworse than those from the state-of-theart algorithms on most test problems.It is also observed that the overlapping domain decomposition scheme is helpful when the data of the problem has certain special structures.展开更多
This paper proposes a nonmonotone line search filter method with reduced Hessian updating for solving nonlinear equality constrained optimization.In order to deal with large scale problems,a reduced Hessian matrix is ...This paper proposes a nonmonotone line search filter method with reduced Hessian updating for solving nonlinear equality constrained optimization.In order to deal with large scale problems,a reduced Hessian matrix is approximated by BFGS updates.The new method assures global convergence without using a merit function.By Lagrangian function in the filter and nonmonotone scheme,the authors prove that the method can overcome Maratos effect without using second order correction step so that the locally superlinear convergence is achieved.The primary numerical experiments are reported to show effectiveness of the proposed algorithm.展开更多
This paper presents a unified bination algorithms (such as FrankWolfe problems. Global convergence results are framework of the nonmonotone convex comAlgorithm) for solving the traffic assignment established under m...This paper presents a unified bination algorithms (such as FrankWolfe problems. Global convergence results are framework of the nonmonotone convex comAlgorithm) for solving the traffic assignment established under mild conditions. The line search procedure used in our algorithm includes the nonmonotone Armijo rule, the non- monotone Goldstein rule and the nonmonotone Wolfe rule as special cases. So, the new algorithm can be viewed as a generalization of the regular convex combination algorithm.展开更多
We propose an inexact Newton method with a filter line search algorithm for nonconvex equality constrained optimization. Inexact Newton's methods are needed for large-scale applications which the iteration matrix can...We propose an inexact Newton method with a filter line search algorithm for nonconvex equality constrained optimization. Inexact Newton's methods are needed for large-scale applications which the iteration matrix cannot be explicitly formed or factored. We incorporate inexact Newton strategies in filter line search, yielding algorithm that can ensure global convergence. An analysis of the global behavior of the algorithm and numerical results on a collection of test problems are presented.展开更多
The minimax optimization model introduced in this paper is an important model which has received some attention over the past years. In this paper, the application of minimax model on how to select the distribution ce...The minimax optimization model introduced in this paper is an important model which has received some attention over the past years. In this paper, the application of minimax model on how to select the distribution center location is first introduced. Then a new algorithm with nonmonotone line search to solve the non-decomposable minimax optimization is proposed. We prove that the new algorithm is global Convergent. Numerical results show the proposed algorithm is effective.展开更多
文摘In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.
基金supported by the National Natural Science Foundation of China(11401126,71471140 and 11361018)Guangxi Natural Science Foundation(2016GXNSFBA380102 and 2014GXNSFFA118001)+2 种基金Guangxi Key Laboratory of Cryptography and Information Security(GCIS201618)Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112 and YQ16112)China
文摘In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.
基金National Natural Sci-ence Foundation of China(Grant No.11771056 and 11871115)the Young Elite Scientists Sponsor-ship Program by CAST(Grant No.2017QNRC001).
文摘This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming weights and minimize the to-tal relay transmit power,while ensuring users’Qual-ity of Services and preventing the information being eavesdropped at the same time.The problem is a robust optimization problem,because of the imper-fect channel state information from users and relays to the eavesdropper.First the original problem is sim-plified,where the high order robust terms are omit-ted.Then we design an iterative algorithm based on line search,by solving two Quadratically Con-strained Quadratic Programming subproblems and a one-dimensional subproblem.Simulation results indi-cate that the proposed algorithm outperforms the state of the arts.
基金Sponsored by Natural Science Foundation of Beijing Municipal Commission of Education(Grant No.KM200510028019).
文摘The non-quasi-Newton methods for unconstrained optimization was investigated. Non-monotone line search procedure is introduced, which is combined with the non-quasi-Newton family. Under the uniform convexity assumption on objective function, the global convergence of the non-quasi-Newton family was proved. Numerical experiments showed that the non-monotone line search was more effective.
文摘It is well known that the line search methods play a very important role for optimization problems. In this paper a new line search method is proposed for solving unconstrained optimization. Under weak conditions, this method possesses global convergence and R-linear convergence for nonconvex function and convex function, respectively. Moreover, the given search direction has sufficiently descent property and belongs to a trust region without carrying out any line search rule. Numerical results show that the new method is effective.
文摘In this paper, we present a new line search and trust region algorithm for unconstrained optimization problems. The trust region center locates at somewhere in the negative gradient direction with the current best iterative point being on the boundary. By doing these, the trust region subproblems are constructed at a new way different with the traditional ones. Then, we test the efficiency of the new line search and trust region algorithm on some standard benchmarking. The computational results reveal that, for most test problems, the number of function and gradient calculations are reduced significantly.
文摘In this paper, we extend a descent algorithm without line search for solving unconstrained optimization problems. Under mild conditions, its global convergence is established. Further, we generalize the search direction to more general form, and also obtain the global convergence of corresponding algorithm. The numerical results illustrate that the new algorithm is effective.
文摘In this paper, the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed, which appears in the study of contact problem in mechanics. We discuss a quadratic programming formulation to the problem. The resulting problems are nonlinear programs that can be solved by a line search filter-SQP algorithm.
文摘In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.
文摘In this paper, we propose a new method which based on the nonmonotone line search technique for solving symmetric nonlinear equations. The method can ensure that the search direction is descent for the norm function. Under suitable conditions, the global convergence of the method is proved. Numerical results show that the presented method is practicable for the test problems.
文摘In this paper, we propose several new line search rules for solving unconstrained minimization problems. These new line search rules can extend the accepted scope of step sizes to a wider extent than the corresponding original ones and give an adequate initial step size at each iteration. It is proved that the resulting line search algorithms have global convergence under some mild conditions. It is also proved that the search direction plays an important role in line search methods and that the step size approaches mainly guarantee global convergence in general cases. The convergence rate of these methods is also investigated. Some numerical results show that these new line search algorithms are effective in practical computation.
文摘In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-Moré performance profiles.
基金This research is supported by the National Natural Science Foundation of China(10171055).
文摘In this paper, a new Wolfe-type line search and a new Armijo-type line searchare proposed, and some global convergence properties of a three-term conjugate gradient method withthe two line searches are proved.
基金supported by the Natural Science Foundation of Anhui Province under Grant No.1708085MF159the Natural Science Foundation of the Anhui Higher Education Institutions under Grant Nos.KJ2017A375+1 种基金KJ2019A0604the abroad visiting of excellent young talents in universities of Anhui province under Grant No.GXGWFX2019022。
文摘To save the calculations of Jacobian,a multi-step Levenberg-Marquardt method named Shamanskii-like LM method for systems of nonlinear equations was proposed by Fa.Its convergence properties have been proved by using a trust region technique under the local error bound condition.However,the authors wonder whether the similar convergence properties are still true with standard line searches since the direction may not be a descent direction.For this purpose,the authors present a new nonmonotone m-th order Armijo type line search to guarantee the global convergence.Under the same condition as trust region case,the convergence rate also has been shown to be m+1 by using this line search technique.Numerical experiments show the new algorithm can save much running time for the large scale problems,so it is efficient and promising.
基金supported by the National Natural Science Foundation of China under Grant Nos.11201304,11371253the Innovation Program of Shanghai Municipal Education Commission under Grant No.12YZ174Group of Accounting and Governance Disciplines(10kq03)
文摘This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero. This new algorithm has more flexibility for the acceptance of the trial step and requires less computational costs compared with traditional filter algorithm. The global and local convergence of the proposed algorithm are given under some reasonable conditions. The numerical experiments are reported to show the effectiveness of the dwindling filter algorithm.
基金Qian Dong was supported in part by the National Natural Science Foundation of China(Nos.11331012,11321061 and 11461161005)Xin Liu was supported in part by the National Natural Science Foundation of China(Nos.11101409,11331012,11471325 and 11461161005)+3 种基金China 863 Program(No.2013AA122902)the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of SciencesZai-Wen Wen was supported in part by the National Natural Science Foundation of China(Nos.11322109 and 91330202)Ya-Xiang Yuan was supported in part by the National Natural Science Foundation of China(Nos.11331012,11321061 and 11461161005).
文摘In this paper,we investigate a parallel subspace correction framework for composite convex optimization.The variables are first divided into a few blocks based on certain rules.At each iteration,the algorithms solve a suitable subproblem on each block simultaneously,construct a search direction by combining their solutions on all blocks,then identify a new point along this direction using a step size satisfying the Armijo line search condition.They are called PSCLN and PSCLO,respectively,depending on whether there are overlapping regions between two imme-diately adjacent blocks of variables.Their convergence is established under mild assumptions.We compare PSCLN and PSCLO with the parallel version of the fast iterative thresholding algorithm and the fixed-point continuation method using the Barzilai-Borwein step size and the greedy coordinate block descent method for solving the l1-regularized minimization problems.Our numerical results showthatPSCLN andPSCLOcan run fast and return solutions notworse than those from the state-of-theart algorithms on most test problems.It is also observed that the overlapping domain decomposition scheme is helpful when the data of the problem has certain special structures.
基金supported by the National Science Foundation of China under Grant No.10871130the Ph.D Foundation under Grant No.20093127110005+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.S30405the Innovation Program of Shanghai Municipal Education Commission under Grant No.12YZ174
文摘This paper proposes a nonmonotone line search filter method with reduced Hessian updating for solving nonlinear equality constrained optimization.In order to deal with large scale problems,a reduced Hessian matrix is approximated by BFGS updates.The new method assures global convergence without using a merit function.By Lagrangian function in the filter and nonmonotone scheme,the authors prove that the method can overcome Maratos effect without using second order correction step so that the locally superlinear convergence is achieved.The primary numerical experiments are reported to show effectiveness of the proposed algorithm.
基金This research is partly supported by National Outstanding Young Investigator Grant(70225005) of National Natural Science Foundation of China and the Project(70471088) of National Natural Science Foundation of China.
文摘This paper presents a unified bination algorithms (such as FrankWolfe problems. Global convergence results are framework of the nonmonotone convex comAlgorithm) for solving the traffic assignment established under mild conditions. The line search procedure used in our algorithm includes the nonmonotone Armijo rule, the non- monotone Goldstein rule and the nonmonotone Wolfe rule as special cases. So, the new algorithm can be viewed as a generalization of the regular convex combination algorithm.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11371253Natural Science Foundation of Hunan Province under Grant No.2016JJ2038the project of Scientific Research Fund of Hunan Provincial Education Department under Grant No.14B044
文摘We propose an inexact Newton method with a filter line search algorithm for nonconvex equality constrained optimization. Inexact Newton's methods are needed for large-scale applications which the iteration matrix cannot be explicitly formed or factored. We incorporate inexact Newton strategies in filter line search, yielding algorithm that can ensure global convergence. An analysis of the global behavior of the algorithm and numerical results on a collection of test problems are presented.
基金Supported by the Fundamental Research Funds for the Central Universities(2014JBM044)
文摘The minimax optimization model introduced in this paper is an important model which has received some attention over the past years. In this paper, the application of minimax model on how to select the distribution center location is first introduced. Then a new algorithm with nonmonotone line search to solve the non-decomposable minimax optimization is proposed. We prove that the new algorithm is global Convergent. Numerical results show the proposed algorithm is effective.