Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years.However,the loss function of the above method is mainly based on pixel-wise errors from the image ...Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years.However,the loss function of the above method is mainly based on pixel-wise errors from the image perspective,which cannot embed the physical knowledge of topology optimization.Therefore,this paper presents an improved deep learning model to alleviate the above difficulty effectively.The feature pyramid network(FPN),a kind of deep learning model,is trained to learn the inherent physical law of topology optimization itself,of which the loss function is composed of pixel-wise errors and physical constraints.Since the calculation of physical constraints requires finite element analysis(FEA)with high calculating costs,the strategy of adjusting the time when physical constraints are added is proposed to achieve the balance between the training cost and the training effect.Then,two classical topology optimization problems are investigated to verify the effectiveness of the proposed method.The results show that the developed model using a small number of samples can quickly obtain the optimization structure without any iteration,which has not only high pixel-wise accuracy but also good physical performance.展开更多
The concept of variantional geometric constraints network is presented. Basedon ISO's feature, three kinds of variational geometric constraints are defined. The concepts ofmate tree (MT) and loop circuit (LC) are ...The concept of variantional geometric constraints network is presented. Basedon ISO's feature, three kinds of variational geometric constraints are defined. The concepts ofmate tree (MT) and loop circuit (LC) are presented. The generation method of well-constrainedvariational geometric constraints network (VGCN) is studied. The network can be applied ingeneration of well-constrained tolerance types and tolerance chains. A simple example is analyzed toshow the scheme to be effective.展开更多
Software Product Line(SPL)is a group of software-intensive systems that share common and variable resources for developing a particular system.The feature model is a tree-type structure used to manage SPL’s common an...Software Product Line(SPL)is a group of software-intensive systems that share common and variable resources for developing a particular system.The feature model is a tree-type structure used to manage SPL’s common and variable features with their different relations and problem of Crosstree Constraints(CTC).CTC problems exist in groups of common and variable features among the sub-tree of feature models more diverse in Internet of Things(IoT)devices because different Internet devices and protocols are communicated.Therefore,managing the CTC problem to achieve valid product configuration in IoT-based SPL is more complex,time-consuming,and hard.However,the CTC problem needs to be considered in previously proposed approaches such as Commonality VariabilityModeling of Features(COVAMOF)andGenarch+tool;therefore,invalid products are generated.This research has proposed a novel approach Binary Oriented Feature Selection Crosstree Constraints(BOFS-CTC),to find all possible valid products by selecting the features according to cardinality constraints and cross-tree constraint problems in the featuremodel of SPL.BOFS-CTC removes the invalid products at the early stage of feature selection for the product configuration.Furthermore,this research developed the BOFS-CTC algorithm and applied it to,IoT-based feature models.The findings of this research are that no relationship constraints and CTC violations occur and drive the valid feature product configurations for the application development by removing the invalid product configurations.The accuracy of BOFS-CTC is measured by the integration sampling technique,where different valid product configurations are compared with the product configurations derived by BOFS-CTC and found 100%correct.Using BOFS-CTC eliminates the testing cost and development effort of invalid SPL products.展开更多
This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features ...This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features bythe feature modeling technology, and the models of feature elements are established. The feature elements thatmeet the design requirements are found by employing a feature matching technology, and the constraint factorscombined with the pseudo density of elements are initialized according to the optimized feature elements. Then,through controlling the constraint factors and utilizing the optimization criterion method along with the filteringtechnology of independent mesh, the structural design optimization is implemented. The present feature modelingapproach is applied to the feature-based structural topology optimization using empirical data. Meanwhile, theimproved mathematical model based on the density method with the constraint factors and the correspondingsolution processes are also presented. Compared with the traditional method which requires complicated constraintprocessing, the present approach is flexibly applied to the 3D structural design optimization with added holesby changing the constraint factors, thus it can design a structure with predetermined features more directly andeasily. Numerical examples show effectiveness of the proposed feature modeling approach, which is suitable for thepractical engineering design.展开更多
针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;...针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;考虑到图像分块特征的局部相似特性,构建LC-BoVW模型分别对目标图像的显著特征进行统计。然后,基于信息融合思想对特征统计量进行融合,形成图像的判别性特征并输入到分类器中进行物料的精确识别。最后,利用自建的5类建筑垃圾物料图像数据集进行实验,实验结果表明,所提算法能够快速有效地实现建筑垃圾物料识别,平均识别准确率可达到97.92%。展开更多
基金This work was supported in part by National Natural Science Foundation of China under Grant Nos.11725211,52005505,and 62001502Post-graduate Scientific Research Innovation Project of Hunan Province under Grant No.CX20200023.
文摘Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years.However,the loss function of the above method is mainly based on pixel-wise errors from the image perspective,which cannot embed the physical knowledge of topology optimization.Therefore,this paper presents an improved deep learning model to alleviate the above difficulty effectively.The feature pyramid network(FPN),a kind of deep learning model,is trained to learn the inherent physical law of topology optimization itself,of which the loss function is composed of pixel-wise errors and physical constraints.Since the calculation of physical constraints requires finite element analysis(FEA)with high calculating costs,the strategy of adjusting the time when physical constraints are added is proposed to achieve the balance between the training cost and the training effect.Then,two classical topology optimization problems are investigated to verify the effectiveness of the proposed method.The results show that the developed model using a small number of samples can quickly obtain the optimization structure without any iteration,which has not only high pixel-wise accuracy but also good physical performance.
基金This project is supported by National Natural Science Found ation of China (No. 59705022).
文摘The concept of variantional geometric constraints network is presented. Basedon ISO's feature, three kinds of variational geometric constraints are defined. The concepts ofmate tree (MT) and loop circuit (LC) are presented. The generation method of well-constrainedvariational geometric constraints network (VGCN) is studied. The network can be applied ingeneration of well-constrained tolerance types and tolerance chains. A simple example is analyzed toshow the scheme to be effective.
文摘Software Product Line(SPL)is a group of software-intensive systems that share common and variable resources for developing a particular system.The feature model is a tree-type structure used to manage SPL’s common and variable features with their different relations and problem of Crosstree Constraints(CTC).CTC problems exist in groups of common and variable features among the sub-tree of feature models more diverse in Internet of Things(IoT)devices because different Internet devices and protocols are communicated.Therefore,managing the CTC problem to achieve valid product configuration in IoT-based SPL is more complex,time-consuming,and hard.However,the CTC problem needs to be considered in previously proposed approaches such as Commonality VariabilityModeling of Features(COVAMOF)andGenarch+tool;therefore,invalid products are generated.This research has proposed a novel approach Binary Oriented Feature Selection Crosstree Constraints(BOFS-CTC),to find all possible valid products by selecting the features according to cardinality constraints and cross-tree constraint problems in the featuremodel of SPL.BOFS-CTC removes the invalid products at the early stage of feature selection for the product configuration.Furthermore,this research developed the BOFS-CTC algorithm and applied it to,IoT-based feature models.The findings of this research are that no relationship constraints and CTC violations occur and drive the valid feature product configurations for the application development by removing the invalid product configurations.The accuracy of BOFS-CTC is measured by the integration sampling technique,where different valid product configurations are compared with the product configurations derived by BOFS-CTC and found 100%correct.Using BOFS-CTC eliminates the testing cost and development effort of invalid SPL products.
基金This work is supported by the National Natural Science Foundation of China(12002218)the Youth Foundation of Education Department of Liaoning Province(JYT19034).These supports are gratefully acknowledged.
文摘This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features bythe feature modeling technology, and the models of feature elements are established. The feature elements thatmeet the design requirements are found by employing a feature matching technology, and the constraint factorscombined with the pseudo density of elements are initialized according to the optimized feature elements. Then,through controlling the constraint factors and utilizing the optimization criterion method along with the filteringtechnology of independent mesh, the structural design optimization is implemented. The present feature modelingapproach is applied to the feature-based structural topology optimization using empirical data. Meanwhile, theimproved mathematical model based on the density method with the constraint factors and the correspondingsolution processes are also presented. Compared with the traditional method which requires complicated constraintprocessing, the present approach is flexibly applied to the 3D structural design optimization with added holesby changing the constraint factors, thus it can design a structure with predetermined features more directly andeasily. Numerical examples show effectiveness of the proposed feature modeling approach, which is suitable for thepractical engineering design.
文摘针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;考虑到图像分块特征的局部相似特性,构建LC-BoVW模型分别对目标图像的显著特征进行统计。然后,基于信息融合思想对特征统计量进行融合,形成图像的判别性特征并输入到分类器中进行物料的精确识别。最后,利用自建的5类建筑垃圾物料图像数据集进行实验,实验结果表明,所提算法能够快速有效地实现建筑垃圾物料识别,平均识别准确率可达到97.92%。