Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM...Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.展开更多
During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition...During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition of different angular positions.This paper investigates characteristics of the novel motor used for contra-propeller driving.Considering the torque ripple and current oscillation under unbalanced load condition,this paper analyzes the distorted back-EMF of the machine when its two rotors get different angular positions during rotating.The analysis results are validated by transient-magnetic 3-D FEA method,which the 3-D FEA software is used to model this motor and transient simulations are carried out to obtain its magnetic characteristic and main performances.A main focus is put on the back-EMF characteristic with different angular positions between the two rotors.Furthermore,the characteristic of torque production under unbalanced load is investigated.Finally,a prototype motor is fabricated to validate the analyses of this paper.展开更多
PM machine or Permanent magnet synchronous motorPMSMis a nonlinear system with multivariable couplings.To achieve the sensorless control of a PMSM with high inertial load,a modified curre...PM machine or Permanent magnet synchronous motorPMSMis a nonlinear system with multivariable couplings.To achieve the sensorless control of a PMSM with high inertial load,a modified current observer,using PI regulator instead of sliding mode switching function,is proposed in this paper.The modified current observer can solve the chattering and phase delay problem while still maintaining the robust advantages of sliding mode system in position estimation.In addition,a new phase-locked loop(PLL)based angle switching strategy is designed to ensure the motor can smoothly switch from I-F control to closed-loop sensorless vector control in startup stage with a high inertial load.The simulation and experimental results show that the control system of PMSM with proposed ideas has fast response speed,accurate rotor position estimation,stable state switching and good system robustness under high inertia load.展开更多
Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By wi...Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By widely studying the previous contributes, a novel estimator based on back-EMF is proposed. The estimator is composed of back-EMF observer and a phase-lock-loop (PLL) control to get the rotor-flux speed and position. The estimator not only can be used for interior and surface permanent magnet synchronous generators, but also has a compact and symmetrical structure, which makes it be beneficial for implementation. Compared with previous strategies, the EMF observer is independent of the PLL control, which would simplify the observer design. Meanwhile, the proposed estimator is less sensitive to parameter variations. Based on mathematic models of PMSG, the proposed estimator was analyzed in detail, and the realizing process was also presented. To validate the proposed estimator, the important experiment results are reported.展开更多
Authors developed a highly effective brushless DC motor with a simple operation principle. If the operation principle of the motor is simple, a drive circuit will also become simple and its production cost will be low...Authors developed a highly effective brushless DC motor with a simple operation principle. If the operation principle of the motor is simple, a drive circuit will also become simple and its production cost will be lower. From the above fact, Minato motor was noticed. In this motor, a unidirectional current flows in the electromagnets. In other words, unidirectional windings are used. In this motor, only strong repulsive force is utilized when a permanent magnet of a rotor and an electromagnet of a stator are adjacent. Hence, torque constant becomes higher and the efficiency of the motor is high. However, an effective value of the electromagnetic current increases because a large current flows in a short period. Therefore, copper loss increases and the efficiency of the motor decreases. In order to solve above defects, a new motor is proposed. From the experiment, it is clarified that the efficiency of the proposed motor is higher than that of the commercial motors.展开更多
We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). Th...We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). The commutation in-stants are 30° after detected zero crossing points of the EFs. Developed EFs have greater magnitude rather than phase or line voltages so that the sensorless control can work at a lower speed range. Moreover,EFs have smooth transitions around zero voltage level that reduces the commutation errors. EFs are derived from the filtered terminal voltages vao and vbo of two low-pass filters,which are used to eliminate high frequency noises for calculation of the average terminal voltages. The feasibility of the proposed sensorless control is demonstrated by simulation and experimental results.展开更多
The permanent-magnet(PM) spherical motor has special configuration and complicated distribution of electromagnetic field.The spatial distribution of the effective flux density produced by permanent magnets is obtained...The permanent-magnet(PM) spherical motor has special configuration and complicated distribution of electromagnetic field.The spatial distribution of the effective flux density produced by permanent magnets is obtained,and the end-effect of the permanent magnets is analyzed.In the 3-dimensional(3-D) finite element(FE) analysis,the calculation of Back-EMF charac-teristics of the PM spherical motor needs to be conducted by steps,which leads to large computational burden.A novel ana-lyzing method to quantize the end-effect of the PM spherical motor is proposed,that is,the end-effect coefficient of the PM spherical motor is calculated to revise the back-EMF waveform obtained from the 2-D FE model.Under different outer radii of the stator coil and different pole arc coefficients of the PM spherical motor,the revised 2-D results are validated by the results obtained from the 3-D FE model and the experimental results.With this method,the special structural feature of the PM spherical motor is fully considered;the pure 3-D calculation of electromagnetic field is conducted only once;higher precision and less computational burden can be achieved.The method provides a new approach to investigating the back-EMF charac-teristic of the PM spherical motor.展开更多
In order to solve the problem of asymmetric bidirectional flux control capability in hybrid excitation machine,a novel structure called dual consequent hybrid excitation synchronous(DCHES)machine is presented in this ...In order to solve the problem of asymmetric bidirectional flux control capability in hybrid excitation machine,a novel structure called dual consequent hybrid excitation synchronous(DCHES)machine is presented in this paper.Generally,the analysis of back-EMF for the machine with complex electromagnetic structure such as DCHES machine should utilize 3-D finite element analysis(FEA),which will require huge resources and computing time.In order to avoid using 3-D FEA to analyze the back-EMF of complex structure,an analytical method of calculating back-EMF is presented in this paper.The electromagnetic field in 3-D space can be simplified as a 2-D field by dividing the 3-D field into several simple zones,the resultant effect equals to the summation of every single 2-D field's effect.According to electromagnetic theory,the analytical formula of back-EMF is obtained on the basis of Fourier series.The influence of main parameters on back-EMF waveform under sine and trapezoidal flux distribution is discussed respectively.The theoretical result shows that the trapezoidal air-gap flux distribution would generate a sine back-EMF.Finally,the presented analytical method is verified and evaluated with experimental results.展开更多
In this paper,an improved rotor position estimation strategy based on third harmonic back-EMF for single-and dual-three-phase permanent magnet synchronous machines(PMSMs)under imbalanced situation is proposed.Due to t...In this paper,an improved rotor position estimation strategy based on third harmonic back-EMF for single-and dual-three-phase permanent magnet synchronous machines(PMSMs)under imbalanced situation is proposed.Due to the imbalanced machine impedance,back-EMF or sensing resistor network,the measured triplen harmonic back-EMF will contain certain fundamental component distortion which may severely deteriorate the performance of rotor position estimation.With the aid of the fundamental component compensator,this distortion can be significantly compensated,and the rotor position estimation error can be minimized considerably.The proposed strategy has been implemented on a dSPACE platform with a prototype of dual-three-phase PMSM with serious imbalanced parameters,and operate at single-and dual-three-phase conditions.The experimental results prove that the proposed strategy can significantly improve the steady-state and dynamic performance of rotor position estimation under imbalanced situation.展开更多
High-speed Brushless DC Motors(BLDCMs)usually adopt a sensorless control strategy and operate in three-phase six-state drive mode.However,the sampling errors of the rotor position and the driving method increase the I...High-speed Brushless DC Motors(BLDCMs)usually adopt a sensorless control strategy and operate in three-phase six-state drive mode.However,the sampling errors of the rotor position and the driving method increase the Internal Power Angle(IPA),resulting in a decrease in the efficiency of the system.Conventional IPA reduction strategies are either sensitive to motor parameters,or ignore diode freewheeling during the commutation process,or require additional current sensors.In this paper,a new strategy to reduce the IPA is proposed.Firstly,a Zero-Crossing Point(ZCP)detection method for the back-EMF without filter is proposed to reduce the sampling errors of the rotor position.Secondly,the relationship between the non-energized terminal voltage and the ZCP of the corresponding back-EMF is analyzed.The non-energized terminal voltage that has completed the diode freewheeling is divided into two triangles by half of the bus voltage.When the IPA is suppressed,the areas of the two triangles are equal.Thirdly,an advanced angle for reducing the IPA is obtained through a PI regulator which can eliminate the deviation between the two areas.Finally,both a simulation model and an experimental circuit are built to verify the proposed control strategy.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 51977099。
文摘Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.
基金This work was supported in part by the National Key R&D Program of China(No.2017YFB1300900)the Natural Science Foundation of China under Grant 51577052,51707062.
文摘During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition of different angular positions.This paper investigates characteristics of the novel motor used for contra-propeller driving.Considering the torque ripple and current oscillation under unbalanced load condition,this paper analyzes the distorted back-EMF of the machine when its two rotors get different angular positions during rotating.The analysis results are validated by transient-magnetic 3-D FEA method,which the 3-D FEA software is used to model this motor and transient simulations are carried out to obtain its magnetic characteristic and main performances.A main focus is put on the back-EMF characteristic with different angular positions between the two rotors.Furthermore,the characteristic of torque production under unbalanced load is investigated.Finally,a prototype motor is fabricated to validate the analyses of this paper.
文摘PM machine or Permanent magnet synchronous motorPMSMis a nonlinear system with multivariable couplings.To achieve the sensorless control of a PMSM with high inertial load,a modified current observer,using PI regulator instead of sliding mode switching function,is proposed in this paper.The modified current observer can solve the chattering and phase delay problem while still maintaining the robust advantages of sliding mode system in position estimation.In addition,a new phase-locked loop(PLL)based angle switching strategy is designed to ensure the motor can smoothly switch from I-F control to closed-loop sensorless vector control in startup stage with a high inertial load.The simulation and experimental results show that the control system of PMSM with proposed ideas has fast response speed,accurate rotor position estimation,stable state switching and good system robustness under high inertia load.
文摘Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By widely studying the previous contributes, a novel estimator based on back-EMF is proposed. The estimator is composed of back-EMF observer and a phase-lock-loop (PLL) control to get the rotor-flux speed and position. The estimator not only can be used for interior and surface permanent magnet synchronous generators, but also has a compact and symmetrical structure, which makes it be beneficial for implementation. Compared with previous strategies, the EMF observer is independent of the PLL control, which would simplify the observer design. Meanwhile, the proposed estimator is less sensitive to parameter variations. Based on mathematic models of PMSG, the proposed estimator was analyzed in detail, and the realizing process was also presented. To validate the proposed estimator, the important experiment results are reported.
文摘Authors developed a highly effective brushless DC motor with a simple operation principle. If the operation principle of the motor is simple, a drive circuit will also become simple and its production cost will be lower. From the above fact, Minato motor was noticed. In this motor, a unidirectional current flows in the electromagnets. In other words, unidirectional windings are used. In this motor, only strong repulsive force is utilized when a permanent magnet of a rotor and an electromagnet of a stator are adjacent. Hence, torque constant becomes higher and the efficiency of the motor is high. However, an effective value of the electromagnetic current increases because a large current flows in a short period. Therefore, copper loss increases and the efficiency of the motor decreases. In order to solve above defects, a new motor is proposed. From the experiment, it is clarified that the efficiency of the proposed motor is higher than that of the commercial motors.
文摘We propose a position sensorless control scheme for a four-switch,three-phase brushless DC motor drive,based on the zero crossing point detection of phase back-EMF voltages using newly defined error functions(EFs). The commutation in-stants are 30° after detected zero crossing points of the EFs. Developed EFs have greater magnitude rather than phase or line voltages so that the sensorless control can work at a lower speed range. Moreover,EFs have smooth transitions around zero voltage level that reduces the commutation errors. EFs are derived from the filtered terminal voltages vao and vbo of two low-pass filters,which are used to eliminate high frequency noises for calculation of the average terminal voltages. The feasibility of the proposed sensorless control is demonstrated by simulation and experimental results.
基金supported by the National Scientific Fund for Distinguished Young Scholars (Grant NO.50825701) the Key Program of National Natural Science Foundation of China (Grant NO.51037004)+1 种基金the National Natural Science Foundation of China (Grant NO.51077097)the Key Technologies Research and Development Program of Tianjin (Grant Nos:10ZCKFGX02300,10ZCKFGX02800)
文摘The permanent-magnet(PM) spherical motor has special configuration and complicated distribution of electromagnetic field.The spatial distribution of the effective flux density produced by permanent magnets is obtained,and the end-effect of the permanent magnets is analyzed.In the 3-dimensional(3-D) finite element(FE) analysis,the calculation of Back-EMF charac-teristics of the PM spherical motor needs to be conducted by steps,which leads to large computational burden.A novel ana-lyzing method to quantize the end-effect of the PM spherical motor is proposed,that is,the end-effect coefficient of the PM spherical motor is calculated to revise the back-EMF waveform obtained from the 2-D FE model.Under different outer radii of the stator coil and different pole arc coefficients of the PM spherical motor,the revised 2-D results are validated by the results obtained from the 3-D FE model and the experimental results.With this method,the special structural feature of the PM spherical motor is fully considered;the pure 3-D calculation of electromagnetic field is conducted only once;higher precision and less computational burden can be achieved.The method provides a new approach to investigating the back-EMF charac-teristic of the PM spherical motor.
基金Supported in part by the Natural Science Foundation of Henan Province under Grant 162300410319the Education Department of Henan Province under Grant 16A470026,Zhengzhou University of Light Industry under Grant 2014BSJJ040the office of Science and Technology in Henan Province under Grant 172102310254.
文摘In order to solve the problem of asymmetric bidirectional flux control capability in hybrid excitation machine,a novel structure called dual consequent hybrid excitation synchronous(DCHES)machine is presented in this paper.Generally,the analysis of back-EMF for the machine with complex electromagnetic structure such as DCHES machine should utilize 3-D finite element analysis(FEA),which will require huge resources and computing time.In order to avoid using 3-D FEA to analyze the back-EMF of complex structure,an analytical method of calculating back-EMF is presented in this paper.The electromagnetic field in 3-D space can be simplified as a 2-D field by dividing the 3-D field into several simple zones,the resultant effect equals to the summation of every single 2-D field's effect.According to electromagnetic theory,the analytical formula of back-EMF is obtained on the basis of Fourier series.The influence of main parameters on back-EMF waveform under sine and trapezoidal flux distribution is discussed respectively.The theoretical result shows that the trapezoidal air-gap flux distribution would generate a sine back-EMF.Finally,the presented analytical method is verified and evaluated with experimental results.
文摘In this paper,an improved rotor position estimation strategy based on third harmonic back-EMF for single-and dual-three-phase permanent magnet synchronous machines(PMSMs)under imbalanced situation is proposed.Due to the imbalanced machine impedance,back-EMF or sensing resistor network,the measured triplen harmonic back-EMF will contain certain fundamental component distortion which may severely deteriorate the performance of rotor position estimation.With the aid of the fundamental component compensator,this distortion can be significantly compensated,and the rotor position estimation error can be minimized considerably.The proposed strategy has been implemented on a dSPACE platform with a prototype of dual-three-phase PMSM with serious imbalanced parameters,and operate at single-and dual-three-phase conditions.The experimental results prove that the proposed strategy can significantly improve the steady-state and dynamic performance of rotor position estimation under imbalanced situation.
基金supported by the National Natural Science Foundation of China(No.51877006)the Key R&D Program of Shaanxi Province,China(No.2021GY-340 and 2020GY-140)the Aeronautical Science Foundation of China(No.20181953020)。
文摘High-speed Brushless DC Motors(BLDCMs)usually adopt a sensorless control strategy and operate in three-phase six-state drive mode.However,the sampling errors of the rotor position and the driving method increase the Internal Power Angle(IPA),resulting in a decrease in the efficiency of the system.Conventional IPA reduction strategies are either sensitive to motor parameters,or ignore diode freewheeling during the commutation process,or require additional current sensors.In this paper,a new strategy to reduce the IPA is proposed.Firstly,a Zero-Crossing Point(ZCP)detection method for the back-EMF without filter is proposed to reduce the sampling errors of the rotor position.Secondly,the relationship between the non-energized terminal voltage and the ZCP of the corresponding back-EMF is analyzed.The non-energized terminal voltage that has completed the diode freewheeling is divided into two triangles by half of the bus voltage.When the IPA is suppressed,the areas of the two triangles are equal.Thirdly,an advanced angle for reducing the IPA is obtained through a PI regulator which can eliminate the deviation between the two areas.Finally,both a simulation model and an experimental circuit are built to verify the proposed control strategy.