目的建立深圳市龙华人民医院院检验科丙氨酸氨基转移酶(ALT)检测系统的溯源性,提高最终检测结果的准确性。方法依据《GB/T 21415-2008/ISO 17511:2003》中的国际标准溯源链式图自建该医院检验科溯源流程图;购买参考物质IRMM ERM AD 454...目的建立深圳市龙华人民医院院检验科丙氨酸氨基转移酶(ALT)检测系统的溯源性,提高最终检测结果的准确性。方法依据《GB/T 21415-2008/ISO 17511:2003》中的国际标准溯源链式图自建该医院检验科溯源流程图;购买参考物质IRMM ERM AD 454,通过测定临床新鲜血清标本进行临床比对确保参考物质具有互通性,同时采用SPSS17.0进行统计学分析,以97%的预测区间和检测项目1/4CL IA'88总允许误差为标准,达到量值传递验证要求,进一步确定不确定度,完成量值溯源工作。结果通过该医院自建的溯源流程实验,证明丙氨酸氨基转移酶试剂盒的产品校准品与IRMM ERM AD 454之间存在互通性,按照不确定度计算公式得到产品校准品的不确定度,赋值表示为135±5U/L。结论该医院检验科自建溯源流程成功对产品校准品进行了赋值修正,提高了试剂检测结果的准确性。展开更多
Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequ...Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequency to prevent the transmission between nodes. In this paper, we propose detecting the position of the jammer indoor by using the received signal strength and Kalman filter (KF) to reduce the noise due to the multipath signal caused by obstacles in the indoor environment. We compare our work to the Linear Prediction Algorithm (LP) and Centroid Localization Algorithm (CL). We observed that the Kalman filter has better results when estimating the distance compared to other algorithms.展开更多
文摘目的建立深圳市龙华人民医院院检验科丙氨酸氨基转移酶(ALT)检测系统的溯源性,提高最终检测结果的准确性。方法依据《GB/T 21415-2008/ISO 17511:2003》中的国际标准溯源链式图自建该医院检验科溯源流程图;购买参考物质IRMM ERM AD 454,通过测定临床新鲜血清标本进行临床比对确保参考物质具有互通性,同时采用SPSS17.0进行统计学分析,以97%的预测区间和检测项目1/4CL IA'88总允许误差为标准,达到量值传递验证要求,进一步确定不确定度,完成量值溯源工作。结果通过该医院自建的溯源流程实验,证明丙氨酸氨基转移酶试剂盒的产品校准品与IRMM ERM AD 454之间存在互通性,按照不确定度计算公式得到产品校准品的不确定度,赋值表示为135±5U/L。结论该医院检验科自建溯源流程成功对产品校准品进行了赋值修正,提高了试剂检测结果的准确性。
文摘Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequency to prevent the transmission between nodes. In this paper, we propose detecting the position of the jammer indoor by using the received signal strength and Kalman filter (KF) to reduce the noise due to the multipath signal caused by obstacles in the indoor environment. We compare our work to the Linear Prediction Algorithm (LP) and Centroid Localization Algorithm (CL). We observed that the Kalman filter has better results when estimating the distance compared to other algorithms.