In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysi...In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysis of bounded quasi-linear operators, we obtain an explicit perturbation theorem and error estimates for the Moore-Penrose bounded quasi-linear generalized inverse of closed linear operator under the T-bounded perturbation, which not only extend some known results on the perturbation of the oblique projection generalized inverse of closed linear operators, but also extend some known results on the perturbation of the Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this...Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.展开更多
In this paper, we study the contraction linearity for metric projection in L p spaces. A geometrical property of a subspace Y of L p is given on which P Y is a contraction projection.
Motivated by the count sketch maximal weighted residual Kaczmarz (CS-MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 126486), we combine the count sketch tech with the maximal weighted residual Kaczm...Motivated by the count sketch maximal weighted residual Kaczmarz (CS-MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 126486), we combine the count sketch tech with the maximal weighted residual Kaczmarz Method with Oblique Projection (MWRKO) constructed by Wang, Li, Bao and Liu (arXiv: 2106.13606) to develop a new method for solving highly overdetermined linear systems. The convergence rate of the new method is analyzed. Numerical results demonstrate that our method performs better in computing time compared with the CS-MWRK and MWRKO methods.展开更多
In this paper, we present a modified projection method for the linear feasibility problems (LFP). Compared with the existing methods, the new method adopts a surrogate technique to obtain new iteration instead of th...In this paper, we present a modified projection method for the linear feasibility problems (LFP). Compared with the existing methods, the new method adopts a surrogate technique to obtain new iteration instead of the line search procedure with fixed stepsize. For the new method, we first show its global convergence under the condition that the solution set is nonempty, and then establish its linear convergence rate. Preliminary numerical experiments show that this method has good performance.展开更多
In this three-part paper, an observer based projective synchronization method for a class of chaotic system is proposed. At the transmitter, a general observer is used to create the scalar signal for synchronizing. In...In this three-part paper, an observer based projective synchronization method for a class of chaotic system is proposed. At the transmitter, a general observer is used to create the scalar signal for synchronizing. In this part, the structure of the projective synchronization method is presented. And the condition of projection synchronization is theoretically analyzed when the synchronization subsystem is linear.展开更多
This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response ...This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
基金Supported by National Nature Science Foundation of China(Grant No.11471091)
文摘In this paper, we investigate the perturbation problem for the Moore-Penrose bounded quasi-linear projection generalized inverses of a closed linear operaters in Banach space. By the method of the perturbation analysis of bounded quasi-linear operators, we obtain an explicit perturbation theorem and error estimates for the Moore-Penrose bounded quasi-linear generalized inverse of closed linear operator under the T-bounded perturbation, which not only extend some known results on the perturbation of the oblique projection generalized inverse of closed linear operators, but also extend some known results on the perturbation of the Moore-Penrose metric generalized inverse of bounded linear operators in Banach spaces.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
基金the financial support provided by the National Natural Science Foundation of China(11472267 and 11372182)the National Basic Research Program of China(2012CB937504)
文摘Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.
基金Supported by the natural science foundation of Hebei
文摘In this paper, we study the contraction linearity for metric projection in L p spaces. A geometrical property of a subspace Y of L p is given on which P Y is a contraction projection.
文摘Motivated by the count sketch maximal weighted residual Kaczmarz (CS-MWRK) method presented by Zhang and Li (Appl. Math. Comput., 410, 126486), we combine the count sketch tech with the maximal weighted residual Kaczmarz Method with Oblique Projection (MWRKO) constructed by Wang, Li, Bao and Liu (arXiv: 2106.13606) to develop a new method for solving highly overdetermined linear systems. The convergence rate of the new method is analyzed. Numerical results demonstrate that our method performs better in computing time compared with the CS-MWRK and MWRKO methods.
基金supported by National Natural Science Foundation of China (No. 10771120)Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘In this paper, we present a modified projection method for the linear feasibility problems (LFP). Compared with the existing methods, the new method adopts a surrogate technique to obtain new iteration instead of the line search procedure with fixed stepsize. For the new method, we first show its global convergence under the condition that the solution set is nonempty, and then establish its linear convergence rate. Preliminary numerical experiments show that this method has good performance.
基金Starting Fund of University of Electronic Science and Technology of China.
文摘In this three-part paper, an observer based projective synchronization method for a class of chaotic system is proposed. At the transmitter, a general observer is used to create the scalar signal for synchronizing. In this part, the structure of the projective synchronization method is presented. And the condition of projection synchronization is theoretically analyzed when the synchronization subsystem is linear.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60875036)the Program for Innovative Research Team of Jiangnan University
文摘This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.