Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu...Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.展开更多
The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed. For bilateral constraints, frictional forces and their impulses contain the ...The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed. For bilateral constraints, frictional forces and their impulses contain the products of the filled-in relay function induced by Coulomb friction and the absolute values of normal constraint reactions. With the time-stepping impulse-velocity scheme, the measure differential equations are discretized. The equations of horizontal linear complementarity problems (HLCPs), which are used to compute the impulses, are constructed by decomposing the absolute function and the filled-in relay function. These HLCP equations degenerate into equations of LCPs for frictional unilateral constraints, or HLCPs for frictional bilateral constraints. Finally, a numerical simulation for multibody systems with both unilateral and bilateral constraints is presented.展开更多
This paper presents an algorithm for computing a linear recurrence system R(n, m) of order m for n equations on MIMD parallel system. This algorithm is not only easy to be programmed on a parallel computer system, but...This paper presents an algorithm for computing a linear recurrence system R(n, m) of order m for n equations on MIMD parallel system. This algorithm is not only easy to be programmed on a parallel computer system, but also reduces the data-waiting time due to compute-ahead strategy. The paper analyses how to achieve maximal load balancing when the algorithm is implemented on MIMD parallel system. By the end of the paper, an analysis on the speedup and parallel efficiency are given. The results indicate that the new parallel elimination algorithm has great improvement compared with the old ones.展开更多
This paper presents a condensed method for linear complementary equations of elasto-plastic problems derived from the variational inequations The present method cuts down computing time enormously and greatly promote...This paper presents a condensed method for linear complementary equations of elasto-plastic problems derived from the variational inequations The present method cuts down computing time enormously and greatly promotes the efficiency of the elasto-plastic analvsis for large scale structures展开更多
Three dimensional frictional contact problems are formulated as linear complementarity problems based on the parametric variational principle. Two aggregate-functionbased algorithms for solving complementarity problem...Three dimensional frictional contact problems are formulated as linear complementarity problems based on the parametric variational principle. Two aggregate-functionbased algorithms for solving complementarity problems are proposed. One is called the self-adjusting interior point algorithm, the other is called the aggregate function smoothing algorithm. Numerical experiment shows the efficiency of the proposed two algorithms.展开更多
The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applicat...The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applications have beenextensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstaclesfaced by the extensive acceptance and usage of these emerging technologies aresecurity and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, theexisting system has issues with specific security issues, privacy-preserving rate,information loss, etc. Hence, the overall system performance is reduced significantly. A unique blockchain-based technique is proposed to improve anonymityin terms of data access and data privacy to overcome the above-mentioned issues.Initially, the registration phase is done for the device and the user. After that, theGeo-Location and IP Address values collected during registration are convertedinto Hash values using Adler 32 hashing algorithm, and the private and publickeys are generated using the key generation centre. Then the authentication is performed through login. The user then submits a request to the blockchain server,which redirects the request to the associated IoT device in order to obtain thesensed IoT data. The detected data is anonymized in the device and stored inthe cloud server using the Linear Scaling based Rider Optimization algorithmwith integrated KL Anonymity (LSR-KLA) approach. After that, the Time-stamp-based Public and Private Key Schnorr Signature (TSPP-SS) mechanismis used to permit the authorized user to access the data, and the blockchain servertracks the entire transaction. The experimental findings showed that the proposedLSR-KLA and TSPP-SS technique provides better performance in terms of higherprivacy-preserving rate, lower information loss, execution time, and Central Processing Unit (CPU) usage than the existing techniques. Thus, the proposed method allows for better data privacy in the smart healthcare network.展开更多
Pine wilt is a dramatic disease that kills infected trees within a few weeks to a few months.The cause is the pathogen Pinewood Nematode.Most plant-parasitic nematodes are attached to plant roots,but pinewood nematode...Pine wilt is a dramatic disease that kills infected trees within a few weeks to a few months.The cause is the pathogen Pinewood Nematode.Most plant-parasitic nematodes are attached to plant roots,but pinewood nematodes are found in the tops of trees.Nematodes kill the tree by feeding the cells around the resin ducts.The modeling of a pine wilt disease is based on six compartments,including three for plants(susceptible trees,exposed trees,and infected trees)and the other for the beetles(susceptible beetles,exposed beetles,and infected beetles).The deterministic modeling,along with subpopulations,is based on Law of mass action.The stability of the model along with equilibria is studied rigorously.The authentication of analytical results is examined through well-known computer methods like Non-standard finite difference(NSFD)and the model’s feasible properties(positivity,boundedness,and dynamical consistency).In the end,comparison analysis shows the effectiveness of the NSFD algorithm.展开更多
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe...The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.展开更多
Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model ...Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.展开更多
Fentanyl is a highly selective u-opioid receptor agonist with high analgesic activity. Three-dimensional pharmacophore models were built from a set of 50 fentanyl derivatives. These were employed to elucidate ligand-r...Fentanyl is a highly selective u-opioid receptor agonist with high analgesic activity. Three-dimensional pharmacophore models were built from a set of 50 fentanyl derivatives. These were employed to elucidate ligand-receptor interactions using information derived only from the ligand structure to identify new potential lead compounds. The present studies demonstrated that three hydrophobic regions, one positive ionizable region and two hydrogen bond acceptor region sites located on the molecule seem to be essential for analgesic activity. The results of the comparative molecular field analysis model suggested that both steric and electrostatic interactions play important roles. The contributions from steric and electrostatic fields for the model were 0.621 and 0.379, respectively. The pharmacophore model provides crucial information about how well the common features of a subject molecule overlap with the hypothesis model, which is very valuable for designing and optimizing new active structures.展开更多
The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterpri...The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterprise data center requires a significant amount of time and human effort. Following a major disruption, the recovery process involves multiple stages, and during each stage, the partially recovered infrastructures can provide limited services to users at some degraded service level. However, how fast and efficiently an enterprise infrastructure can be recovered de- pends on how the recovery mechanism restores the disrupted components, considering the inter-dependencies between services, along with the limitations of expert human operators. The entire problem turns out to be NP- hard and rather complex, and we devise an efficient meta-heuristic to solve the problem. By considering some real-world examples, we show that the proposed meta-heuristic provides very accurate results, and still runs 600-2800 times faster than the optimal solution obtained from a general purpose mathematical solver [1].展开更多
This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the ex...This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.展开更多
Let G be an edge-colored graph. The monochromatic tree partition problem is to find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of G. In the authors' previous work, it has been...Let G be an edge-colored graph. The monochromatic tree partition problem is to find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of G. In the authors' previous work, it has been proved that the problem is NP-complete and there does not exist any constant factor approximation algorithm for it unless P= NP. In this paper the authors show that for any fixed integer r ≥ 5, if the edges of a graph G are colored by r colors, called an r-edge-colored graph, the problem remains NP-complete. Similar result holds for the monochromatic path (cycle) partition problem. Therefore, to find some classes of interesting graphs for which the problem can be solved in polynomial time seems interesting. A linear time algorithm for the monochromatic path partition problem for edge-colored trees is given.展开更多
One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea...One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea surface wind speed at an incidence angle between 0°65°.We assume that a one-dimensional synthetic aperture microwave radiometer operates at frequencies of 6.9,10.65,18.7,23.8 and 36.5 GHz.Then,the microwave radiative transfer forward model is used to simulate the measured brightness temperatures.The sensitivity of the brightness temperatures at 0°65°to the sea surface wind speed is calculated.Then,vertical polarization channels(VR),horizontal polarization channels(HR)and all channels(AR)are used to retrieve the sea surface wind speed via a multiple linear regression algorithm at 0°65°,and the relationship between the retrieval error and incidence angle is obtained.The results are as follows:(1)The sensitivity of the vertical polarization brightness temperature to the sea surface wind speed is smaller than that of the horizontal polarization.(2)The retrieval error increases with Gaussian noise.The retrieval error of VR first increases and then decreases with increasing incidence angle,the retrieval error of HR gradually decreases with increasing incidence angle,and the retrieval error of AR first decreases and then increases with increasing incidence angle.(3)The retrieval error of AR is the lowest and it is necessary to retrieve the sea surface wind speed at a larger incidence angle for AR.展开更多
Rail systems are gradually becoming the most desirable form of transit infrastructure around the world, partly because they are becoming more environmentally friendly compared with airplanes and automobiles. This pape...Rail systems are gradually becoming the most desirable form of transit infrastructure around the world, partly because they are becoming more environmentally friendly compared with airplanes and automobiles. This paper examines the place of emerging countries in this move of implementing modern rail system that will eventually enhance the realization of a low-carbon society. Network model, transportation model and linear programming algorithms are used to model the present urban rail transport system in Nigeria, as an emerging country, in order to optimize it. Operational research methods, including simplex method and MODI, with the aids of computer software (excel solver and LIP solver) were adopted to solve the resulting models. The results showed that optimization of rail transport system will not only reduce carbon emission but also bring about economic development which is required for the eradication of prevalent poverty in these emerging countries.展开更多
By applying the Huber regression algorithm to a relatively new technology of diffuse correlation spectroscopy(DCS),the blood flow index(BFI)from light electric field temporal autocorrelation data is extracted accurate...By applying the Huber regression algorithm to a relatively new technology of diffuse correlation spectroscopy(DCS),the blood flow index(BFI)from light electric field temporal autocorrelation data is extracted accurately via the Nth-order linear(NL)algorithm.The NL algorithm can extract BFI from tissues with irregular geometric shapes,and its accuracy depends on iterative linear regression.The combination of Huber regression with the NL algorithm is proposed in this paper for the first time.The Huber regression is compared with traditional ordinary least square(OLS)regression through computer simulations for evaluation.The results show that the Huber regression is more accurate in extracting BFI than OLS.Compared to the OLS with an error rate of 4.58%,Huber achieves a much smaller error rate(3.54%),indicating its potential in future clinical applications.展开更多
A new control strategy based on modal energy criterion is proposed to demonstrate the effectiveness of the control system in reducing structural earthquake responses. The modal control algorithm combining LQR(linear q...A new control strategy based on modal energy criterion is proposed to demonstrate the effectiveness of the control system in reducing structural earthquake responses. The modal control algorithm combining LQR(linear quadratic regulator) control algorithm is adopted in the discrete time-history analysis. The various modal energy forms are derived by definition of the generalized absolute displacement vector. A preliminary numerical study of the effectiveness of this control strategy is carried out on a 20-storey framed steel structural model. The controlled performance of the model is studied from the perspectives of both response and modal energy. Results show that the modal energy-based control strategy is very effective in reducing structural responses as well as in consuming a large amount of modal energy,while augmentation of additional generalized control force corresponding to the modes that contain little modal energy is unnecessary,as it does little help to improve the controlled structural performance.展开更多
The problem of solving a linear programming is converted into that of solving an uncon-strained maximization problem in which the objective function is concave. Two algorithms areproposed. These two algorithms have ve...The problem of solving a linear programming is converted into that of solving an uncon-strained maximization problem in which the objective function is concave. Two algorithms areproposed. These two algorithms have very simple structure and can be implemented easily. Forany given precision, the algorithms will terminate in a finite number of steps.展开更多
A challenging task when applying high-order digital modulation schemes is the complexity of the detector. Particularly, the complexity of the optimal a posteriori probability (APP) detector increases exponentially w...A challenging task when applying high-order digital modulation schemes is the complexity of the detector. Particularly, the complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of bits per data symbol. This statement is also true for the Max-Log-APP detector, which is a common simplification of the APP detector. Thus it is important to design new detection algorithms which combine a sufficient performance with low complexity. In this contribution, a detection algorithm for two- dimensional digital modulation schemes which cannot be split-up into real and imaginary parts (like phase shift keying and phase-shifted snperposition modulation (PSM)) is proposed with emphasis on PSM with equal power allocation. This algorithm exploits the relationship between Max-Log-APP detection and a Voronoi diagram to determine planar surfaces of the soft outputs over the entire range of detector input values. As opposed to state-of-the-art detectors based on Voronoi surfaces, a priori information is taken into account, enabling iterative processing. Since the algorithm achieves Max-Log-APP performance, even in the presence of a priori information, this implies a great potential for complexity reduction compared to the classical APP detection.展开更多
Many people have been dead of cancer. The life quality of patients with cancer has aroused great concern from the public and specialists. In this paper, an index system of life quality is proposed to evaluate the qual...Many people have been dead of cancer. The life quality of patients with cancer has aroused great concern from the public and specialists. In this paper, an index system of life quality is proposed to evaluate the quality of life, which includes 6 first-level indexes and 34 second-level indexes. Then, a structural equation model (SEM) based on these in-dexes and relationships among them is constructed for the analysis of quality of life in cancer patients. Furthermore, we offer a definite linear algorithm for the calculation of SEM. This method is more objective and scientific compared with traditional methods, such as descriptive analysis, some simple test methods and so on.展开更多
基金Project(JCYJ20190808175801656)supported by the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2021M691427)supported by Postdoctoral Science Foundation of ChinaProject(9680086)supported by the City University of Hong Kong,China。
文摘Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.
基金supported by the National Natural Science Foundation of China (10672007)
文摘The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed. For bilateral constraints, frictional forces and their impulses contain the products of the filled-in relay function induced by Coulomb friction and the absolute values of normal constraint reactions. With the time-stepping impulse-velocity scheme, the measure differential equations are discretized. The equations of horizontal linear complementarity problems (HLCPs), which are used to compute the impulses, are constructed by decomposing the absolute function and the filled-in relay function. These HLCP equations degenerate into equations of LCPs for frictional unilateral constraints, or HLCPs for frictional bilateral constraints. Finally, a numerical simulation for multibody systems with both unilateral and bilateral constraints is presented.
文摘This paper presents an algorithm for computing a linear recurrence system R(n, m) of order m for n equations on MIMD parallel system. This algorithm is not only easy to be programmed on a parallel computer system, but also reduces the data-waiting time due to compute-ahead strategy. The paper analyses how to achieve maximal load balancing when the algorithm is implemented on MIMD parallel system. By the end of the paper, an analysis on the speedup and parallel efficiency are given. The results indicate that the new parallel elimination algorithm has great improvement compared with the old ones.
文摘This paper presents a condensed method for linear complementary equations of elasto-plastic problems derived from the variational inequations The present method cuts down computing time enormously and greatly promotes the efficiency of the elasto-plastic analvsis for large scale structures
基金The project supported by the National Natural Science foundation of china(10225212,50178016.10302007)the National Kev Basic Research Special Foundation and the Ministry of Education of China
文摘Three dimensional frictional contact problems are formulated as linear complementarity problems based on the parametric variational principle. Two aggregate-functionbased algorithms for solving complementarity problems are proposed. One is called the self-adjusting interior point algorithm, the other is called the aggregate function smoothing algorithm. Numerical experiment shows the efficiency of the proposed two algorithms.
文摘The Internet of Things (IoT) and Cloud computing are gaining popularity due to their numerous advantages, including the efficient utilization of internetand computing resources. In recent years, many more IoT applications have beenextensively used. For instance, Healthcare applications execute computations utilizing the user’s private data stored on cloud servers. However, the main obstaclesfaced by the extensive acceptance and usage of these emerging technologies aresecurity and privacy. Moreover, many healthcare data management system applications have emerged, offering solutions for distinct circumstances. But still, theexisting system has issues with specific security issues, privacy-preserving rate,information loss, etc. Hence, the overall system performance is reduced significantly. A unique blockchain-based technique is proposed to improve anonymityin terms of data access and data privacy to overcome the above-mentioned issues.Initially, the registration phase is done for the device and the user. After that, theGeo-Location and IP Address values collected during registration are convertedinto Hash values using Adler 32 hashing algorithm, and the private and publickeys are generated using the key generation centre. Then the authentication is performed through login. The user then submits a request to the blockchain server,which redirects the request to the associated IoT device in order to obtain thesensed IoT data. The detected data is anonymized in the device and stored inthe cloud server using the Linear Scaling based Rider Optimization algorithmwith integrated KL Anonymity (LSR-KLA) approach. After that, the Time-stamp-based Public and Private Key Schnorr Signature (TSPP-SS) mechanismis used to permit the authorized user to access the data, and the blockchain servertracks the entire transaction. The experimental findings showed that the proposedLSR-KLA and TSPP-SS technique provides better performance in terms of higherprivacy-preserving rate, lower information loss, execution time, and Central Processing Unit (CPU) usage than the existing techniques. Thus, the proposed method allows for better data privacy in the smart healthcare network.
文摘Pine wilt is a dramatic disease that kills infected trees within a few weeks to a few months.The cause is the pathogen Pinewood Nematode.Most plant-parasitic nematodes are attached to plant roots,but pinewood nematodes are found in the tops of trees.Nematodes kill the tree by feeding the cells around the resin ducts.The modeling of a pine wilt disease is based on six compartments,including three for plants(susceptible trees,exposed trees,and infected trees)and the other for the beetles(susceptible beetles,exposed beetles,and infected beetles).The deterministic modeling,along with subpopulations,is based on Law of mass action.The stability of the model along with equilibria is studied rigorously.The authentication of analytical results is examined through well-known computer methods like Non-standard finite difference(NSFD)and the model’s feasible properties(positivity,boundedness,and dynamical consistency).In the end,comparison analysis shows the effectiveness of the NSFD algorithm.
基金The project supported by the National Natural Science Foundation of China (50579081)the Australian Research Council (DP0452681)The English text was polished by Keren Wang
文摘The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
基金part of the Program of"Study on the mechanism of complex heat and mass transfer during batch transport process in products pipelines"funded under the National Natural Science Foundation of China(grant number 51474228)
文摘Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.
基金supported by the National Natural Science Foundation of China,No.20872095
文摘Fentanyl is a highly selective u-opioid receptor agonist with high analgesic activity. Three-dimensional pharmacophore models were built from a set of 50 fentanyl derivatives. These were employed to elucidate ligand-receptor interactions using information derived only from the ligand structure to identify new potential lead compounds. The present studies demonstrated that three hydrophobic regions, one positive ionizable region and two hydrogen bond acceptor region sites located on the molecule seem to be essential for analgesic activity. The results of the comparative molecular field analysis model suggested that both steric and electrostatic interactions play important roles. The contributions from steric and electrostatic fields for the model were 0.621 and 0.379, respectively. The pharmacophore model provides crucial information about how well the common features of a subject molecule overlap with the hypothesis model, which is very valuable for designing and optimizing new active structures.
文摘The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterprise data center requires a significant amount of time and human effort. Following a major disruption, the recovery process involves multiple stages, and during each stage, the partially recovered infrastructures can provide limited services to users at some degraded service level. However, how fast and efficiently an enterprise infrastructure can be recovered de- pends on how the recovery mechanism restores the disrupted components, considering the inter-dependencies between services, along with the limitations of expert human operators. The entire problem turns out to be NP- hard and rather complex, and we devise an efficient meta-heuristic to solve the problem. By considering some real-world examples, we show that the proposed meta-heuristic provides very accurate results, and still runs 600-2800 times faster than the optimal solution obtained from a general purpose mathematical solver [1].
文摘This paper considers the H-infinity dynamic output feedback control for descriptor systems with delay in states. The controller is a descriptor system without delay. Several equivalent sufficient conditions for the existence of one descriptor dynamic controller without impulsive models are given. Furthermore the explicit expression of the desired controller is obtained. The detailed design of the controller is presented using the cone complementarity linearization iterative algorithm and the LMI method. A ntumerical example is shown to illustrate the designed method.
基金Supported by the National Natural Science Foundation of China,PCSIRT and the"973"Program
文摘Let G be an edge-colored graph. The monochromatic tree partition problem is to find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of G. In the authors' previous work, it has been proved that the problem is NP-complete and there does not exist any constant factor approximation algorithm for it unless P= NP. In this paper the authors show that for any fixed integer r ≥ 5, if the edges of a graph G are colored by r colors, called an r-edge-colored graph, the problem remains NP-complete. Similar result holds for the monochromatic path (cycle) partition problem. Therefore, to find some classes of interesting graphs for which the problem can be solved in polynomial time seems interesting. A linear time algorithm for the monochromatic path partition problem for edge-colored trees is given.
基金National Natural Science Foundation of China(41475019,41631072)
文摘One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea surface wind speed at an incidence angle between 0°65°.We assume that a one-dimensional synthetic aperture microwave radiometer operates at frequencies of 6.9,10.65,18.7,23.8 and 36.5 GHz.Then,the microwave radiative transfer forward model is used to simulate the measured brightness temperatures.The sensitivity of the brightness temperatures at 0°65°to the sea surface wind speed is calculated.Then,vertical polarization channels(VR),horizontal polarization channels(HR)and all channels(AR)are used to retrieve the sea surface wind speed via a multiple linear regression algorithm at 0°65°,and the relationship between the retrieval error and incidence angle is obtained.The results are as follows:(1)The sensitivity of the vertical polarization brightness temperature to the sea surface wind speed is smaller than that of the horizontal polarization.(2)The retrieval error increases with Gaussian noise.The retrieval error of VR first increases and then decreases with increasing incidence angle,the retrieval error of HR gradually decreases with increasing incidence angle,and the retrieval error of AR first decreases and then increases with increasing incidence angle.(3)The retrieval error of AR is the lowest and it is necessary to retrieve the sea surface wind speed at a larger incidence angle for AR.
文摘Rail systems are gradually becoming the most desirable form of transit infrastructure around the world, partly because they are becoming more environmentally friendly compared with airplanes and automobiles. This paper examines the place of emerging countries in this move of implementing modern rail system that will eventually enhance the realization of a low-carbon society. Network model, transportation model and linear programming algorithms are used to model the present urban rail transport system in Nigeria, as an emerging country, in order to optimize it. Operational research methods, including simplex method and MODI, with the aids of computer software (excel solver and LIP solver) were adopted to solve the resulting models. The results showed that optimization of rail transport system will not only reduce carbon emission but also bring about economic development which is required for the eradication of prevalent poverty in these emerging countries.
基金Shanxi Provincial Key Research and Development Project(No.201903D121149)Natural Science Foundation of Shanxi Province(No.201901D111153)+3 种基金National Natural Science Foundation of China(Nos.61671413,61771433)National Key Scientific Instrument and Equipment Development Project of China(No.2014YQ24044508)OIT Program of Shanxi Province,Shanxi Postgraduate Education Innovation Program(Nos.2020SY366,2020SY367)Graduate Science and Technology Project of North University of China(No.20201726)。
文摘By applying the Huber regression algorithm to a relatively new technology of diffuse correlation spectroscopy(DCS),the blood flow index(BFI)from light electric field temporal autocorrelation data is extracted accurately via the Nth-order linear(NL)algorithm.The NL algorithm can extract BFI from tissues with irregular geometric shapes,and its accuracy depends on iterative linear regression.The combination of Huber regression with the NL algorithm is proposed in this paper for the first time.The Huber regression is compared with traditional ordinary least square(OLS)regression through computer simulations for evaluation.The results show that the Huber regression is more accurate in extracting BFI than OLS.Compared to the OLS with an error rate of 4.58%,Huber achieves a much smaller error rate(3.54%),indicating its potential in future clinical applications.
基金Project (No. G20050452) supported by the Education Bureau of Zhejiang Province, China
文摘A new control strategy based on modal energy criterion is proposed to demonstrate the effectiveness of the control system in reducing structural earthquake responses. The modal control algorithm combining LQR(linear quadratic regulator) control algorithm is adopted in the discrete time-history analysis. The various modal energy forms are derived by definition of the generalized absolute displacement vector. A preliminary numerical study of the effectiveness of this control strategy is carried out on a 20-storey framed steel structural model. The controlled performance of the model is studied from the perspectives of both response and modal energy. Results show that the modal energy-based control strategy is very effective in reducing structural responses as well as in consuming a large amount of modal energy,while augmentation of additional generalized control force corresponding to the modes that contain little modal energy is unnecessary,as it does little help to improve the controlled structural performance.
文摘The problem of solving a linear programming is converted into that of solving an uncon-strained maximization problem in which the objective function is concave. Two algorithms areproposed. These two algorithms have very simple structure and can be implemented easily. Forany given precision, the algorithms will terminate in a finite number of steps.
文摘A challenging task when applying high-order digital modulation schemes is the complexity of the detector. Particularly, the complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of bits per data symbol. This statement is also true for the Max-Log-APP detector, which is a common simplification of the APP detector. Thus it is important to design new detection algorithms which combine a sufficient performance with low complexity. In this contribution, a detection algorithm for two- dimensional digital modulation schemes which cannot be split-up into real and imaginary parts (like phase shift keying and phase-shifted snperposition modulation (PSM)) is proposed with emphasis on PSM with equal power allocation. This algorithm exploits the relationship between Max-Log-APP detection and a Voronoi diagram to determine planar surfaces of the soft outputs over the entire range of detector input values. As opposed to state-of-the-art detectors based on Voronoi surfaces, a priori information is taken into account, enabling iterative processing. Since the algorithm achieves Max-Log-APP performance, even in the presence of a priori information, this implies a great potential for complexity reduction compared to the classical APP detection.
文摘Many people have been dead of cancer. The life quality of patients with cancer has aroused great concern from the public and specialists. In this paper, an index system of life quality is proposed to evaluate the quality of life, which includes 6 first-level indexes and 34 second-level indexes. Then, a structural equation model (SEM) based on these in-dexes and relationships among them is constructed for the analysis of quality of life in cancer patients. Furthermore, we offer a definite linear algorithm for the calculation of SEM. This method is more objective and scientific compared with traditional methods, such as descriptive analysis, some simple test methods and so on.