We discuss the linear conjugate boundary value problems on the unit circle and the real axis. We obtain some Fredholm integral equations. Using thess equations we discuss the solvable conditions on these problems and ...We discuss the linear conjugate boundary value problems on the unit circle and the real axis. We obtain some Fredholm integral equations. Using thess equations we discuss the solvable conditions on these problems and we also give a direct method for the extension problems on the real axis.展开更多
Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation, and then a boundary in...Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation, and then a boundary integral equation approach is established by partitioning boundary using linear boundary element.展开更多
With the rural concealed communication cable as the study object, the shielding effectiveness of different slot shapes was analyzed by using LBEM (linear boundary element method). The engineering example results sho...With the rural concealed communication cable as the study object, the shielding effectiveness of different slot shapes was analyzed by using LBEM (linear boundary element method). The engineering example results showed that for twocore shielded cable, the coupling capacitance of trapezoid slots (asymmetric and symmetric) changed the most, followed by rectangular slots (asymmetric and symmetric), and the changes of wedge slots were the smallest, but the change tenden- cies were consistent. In addition, with the increase of slot width of different slots, the coupling capacitance of tow-cored shielded cable showed small change.展开更多
By using the upper and lower solution method and fixed point theory, we investigate some nonlinear singular second-order differential equations with linear functional boundary conditions. The nonlinear term f(t, u) ...By using the upper and lower solution method and fixed point theory, we investigate some nonlinear singular second-order differential equations with linear functional boundary conditions. The nonlinear term f(t, u) is nonincreasing with respect to u, and only possesses some integrability. We obtain the existence and uniqueness of the C[0, 1] positive solutions as well as the C1 [0, 1] positive solutions.展开更多
The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed.The mixing layers include wake,shear layer and their combination.The mean velocity profile of confluent flow is taken ...The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed.The mixing layers include wake,shear layer and their combination.The mean velocity profile of confluent flow is taken as a superposition of a hyperbolic and exponential function to model a mixing layer and the Blasius similarity solution for a flat plate boundary layer.The stability equation of confluent flow was solved by using the global numerical method.The unstable modes associated with both the mixing and boundary layers were identified.They are the boundary layer mode,mixing layer mode 1(nearly symmetrical mode)and mode 2(nearly anti-symmetrical mode).The interactions between the mixing layer stability and the boundary layer stability were examined.As the mixing layer approaches the boundary layer,the neutral curves of the boundary layer mode move to the upper left,the resulting critical Reynolds number decreases,and the growth rate of the most unstable mode increases.The wall tends to stabilize the mixing layer modes at low frequency.In addition,the mode switching behavior of the relative level of the spatial growth rate between the mixing layer mode 1 and mode 2 with the velocity ratio is found to occur at low frequency.展开更多
In this paper we are concerned with finite difference schemes for the numerical approximation of linear Hamiltonian systems of ODEs. Numerical methods which preserves the qualitative properties of Hamiltonian flows ar...In this paper we are concerned with finite difference schemes for the numerical approximation of linear Hamiltonian systems of ODEs. Numerical methods which preserves the qualitative properties of Hamiltonian flows are called symplectic intoprators. Several symplectic methods are known in the class of Runge-Kutta methods. However, no higll order symplectic integrators are known in the class of Linear Multistep Methods (LMMs). Here, by using LMMs as Boundary Value Methods (BVMs), we show that symplectic integrators of arbitrary high order are also available in this class. Moreover, these methods can be used to solve both initial and boundary value problems. In both cases, the properties of the flow of Hamiltonian systems are 'essentially' maintained by the discrete map, at least for linear problems.展开更多
基金Supported by the National Natural Science Foundation of China (10471107)
文摘We discuss the linear conjugate boundary value problems on the unit circle and the real axis. We obtain some Fredholm integral equations. Using thess equations we discuss the solvable conditions on these problems and we also give a direct method for the extension problems on the real axis.
文摘Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation, and then a boundary integral equation approach is established by partitioning boundary using linear boundary element.
基金Supported by the Science and Technology Program of the Education Department of Shaanxi Provincial Government(09JK378)the Key Scientific Research Fund of Shaanxi University of Technology(SLGKY12-02)~~
文摘With the rural concealed communication cable as the study object, the shielding effectiveness of different slot shapes was analyzed by using LBEM (linear boundary element method). The engineering example results showed that for twocore shielded cable, the coupling capacitance of trapezoid slots (asymmetric and symmetric) changed the most, followed by rectangular slots (asymmetric and symmetric), and the changes of wedge slots were the smallest, but the change tenden- cies were consistent. In addition, with the increase of slot width of different slots, the coupling capacitance of tow-cored shielded cable showed small change.
基金. Supported by National Natural Science Foundation of China (Grant No. 10871116), Natural Science Foundation of Shandong Province of China (Grant No. ZR2010AM005) and the Doctoral Program Foundation of Education Ministry of China (Grant No. 200804460001)Acknowledgements The authors would like to thank the referees for their valuable comments.
文摘By using the upper and lower solution method and fixed point theory, we investigate some nonlinear singular second-order differential equations with linear functional boundary conditions. The nonlinear term f(t, u) is nonincreasing with respect to u, and only possesses some integrability. We obtain the existence and uniqueness of the C[0, 1] positive solutions as well as the C1 [0, 1] positive solutions.
基金supported by the National Natural Science Foundation of China (No. 51476152)
文摘The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed.The mixing layers include wake,shear layer and their combination.The mean velocity profile of confluent flow is taken as a superposition of a hyperbolic and exponential function to model a mixing layer and the Blasius similarity solution for a flat plate boundary layer.The stability equation of confluent flow was solved by using the global numerical method.The unstable modes associated with both the mixing and boundary layers were identified.They are the boundary layer mode,mixing layer mode 1(nearly symmetrical mode)and mode 2(nearly anti-symmetrical mode).The interactions between the mixing layer stability and the boundary layer stability were examined.As the mixing layer approaches the boundary layer,the neutral curves of the boundary layer mode move to the upper left,the resulting critical Reynolds number decreases,and the growth rate of the most unstable mode increases.The wall tends to stabilize the mixing layer modes at low frequency.In addition,the mode switching behavior of the relative level of the spatial growth rate between the mixing layer mode 1 and mode 2 with the velocity ratio is found to occur at low frequency.
文摘In this paper we are concerned with finite difference schemes for the numerical approximation of linear Hamiltonian systems of ODEs. Numerical methods which preserves the qualitative properties of Hamiltonian flows are called symplectic intoprators. Several symplectic methods are known in the class of Runge-Kutta methods. However, no higll order symplectic integrators are known in the class of Linear Multistep Methods (LMMs). Here, by using LMMs as Boundary Value Methods (BVMs), we show that symplectic integrators of arbitrary high order are also available in this class. Moreover, these methods can be used to solve both initial and boundary value problems. In both cases, the properties of the flow of Hamiltonian systems are 'essentially' maintained by the discrete map, at least for linear problems.