针对非正态响应的部分因子试验,当筛选试验所涉及的因子数目较大时,提出了基于广义线性模型(generalized linear models,GLM)的贝叶斯变量与模型选择方法.首先,针对模型参数的不确定性,选择了经验贝叶斯先验.其次,在广义线性模型的线性...针对非正态响应的部分因子试验,当筛选试验所涉及的因子数目较大时,提出了基于广义线性模型(generalized linear models,GLM)的贝叶斯变量与模型选择方法.首先,针对模型参数的不确定性,选择了经验贝叶斯先验.其次,在广义线性模型的线性预测器中对每个变量设置了二元变量指示器,并建立起变量指示器与模型指示器之间的转换关系.然后,利用变量指示器与模型指示器的后验概率来识别显著性因子与选择最佳模型.最后,以实际的工业案例说明此方法能够有效地识别非正态响应部分因子试验的显著性因子.展开更多
A study of the dynamical fluctuation properties at various c.m. energies in e^+e^- collisions is performed using the Monte Carlo method. The results suggest that, after the normalized factorial moments of 3-dimension...A study of the dynamical fluctuation properties at various c.m. energies in e^+e^- collisions is performed using the Monte Carlo method. The results suggest that, after the normalized factorial moments of 3-dimensional phase space are analyzed using an isotropical phase space partition, the NFM describing non- linear dynamical properties show a power-law scaling, i.e., the dynamical fluctuations in higher dimensional phase space are isotropic. For c.m. energies √s≤ 80 GeV, the scaling exponents φq increase rapidly with the c.m. energy and for c.m. energies √s 〉 80 GeV, the φq gradually saturate.展开更多
文摘针对非正态响应的部分因子试验,当筛选试验所涉及的因子数目较大时,提出了基于广义线性模型(generalized linear models,GLM)的贝叶斯变量与模型选择方法.首先,针对模型参数的不确定性,选择了经验贝叶斯先验.其次,在广义线性模型的线性预测器中对每个变量设置了二元变量指示器,并建立起变量指示器与模型指示器之间的转换关系.然后,利用变量指示器与模型指示器的后验概率来识别显著性因子与选择最佳模型.最后,以实际的工业案例说明此方法能够有效地识别非正态响应部分因子试验的显著性因子.
基金Supported by NSFC(10375025)Science Foundation of Education Department of Hubei Province(EJK0316)
文摘A study of the dynamical fluctuation properties at various c.m. energies in e^+e^- collisions is performed using the Monte Carlo method. The results suggest that, after the normalized factorial moments of 3-dimensional phase space are analyzed using an isotropical phase space partition, the NFM describing non- linear dynamical properties show a power-law scaling, i.e., the dynamical fluctuations in higher dimensional phase space are isotropic. For c.m. energies √s≤ 80 GeV, the scaling exponents φq increase rapidly with the c.m. energy and for c.m. energies √s 〉 80 GeV, the φq gradually saturate.