A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor spee...A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.展开更多
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl...An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.展开更多
To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally toleran...To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.展开更多
The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs...The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs with parameter uncertainty, network-induced delay, nonlinearity and data packet dropout in the transmission, a strict linear matrix inequality (LMI) criterion is proposed for robust stabilization of the uncertain nonlinear NCSs based on the Lyapunov stability theory. The maximum allowable transfer interval (MATI) can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.展开更多
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition techn...This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is non- minimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
We consider optimal control problems for the flow of gas in a pipe network. The equations of motions are taken to be represented by a semi-linear model derived from the fully nonlinear isothermal Euler gas equations. ...We consider optimal control problems for the flow of gas in a pipe network. The equations of motions are taken to be represented by a semi-linear model derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a given network and introduce a time discretization thereof. We then study the well-posedness of the corresponding time-discrete optimal control problem. In order to further reduce the complexity, we consider an instantaneous control strategy. The main part of the paper is concerned with a non-overlapping domain decomposition of the semi-linear elliptic optimal control problem on the graph into local problems on a small part of the network, ultimately on a single edge.展开更多
This paper is concerned with the problem of robust stability analysis for networked control systems (NCSs). A new NCS model is proposed under consideration of both the network-induced delay and parameter uncertainti...This paper is concerned with the problem of robust stability analysis for networked control systems (NCSs). A new NCS model is proposed under consideration of both the network-induced delay and parameter uncertainties. The parameter uncertainties appearing in NCSs are norm-bounded, and possibly time-varying. The conventional method and the descriptor system method are used to obtain maximum allowable delay bound (MADB) guaranteeing robust stability and stability of the NCSs, respectively, where the stability criteria are formulated in terms of linear matrix inequalities (LMIs). And the MADB can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to illustrate the effectiveness of the proposed method.展开更多
This paper focuses on the problem of stability analysis and controller design for a class of delay systems based on networked control systems. By introducing some free matrix variables, some criteria for stability ana...This paper focuses on the problem of stability analysis and controller design for a class of delay systems based on networked control systems. By introducing some free matrix variables, some criteria for stability analysis and observer-based control law design can be obtained by the solving of linear matrix inequalities. A numerical example is also offered to prove the effectiveness of the proposed method.展开更多
A new controller design problem of networked control systems with packet dropping is proposed. Depending on the place that the observer is put in the system, the network control systems with packet dropping are modele...A new controller design problem of networked control systems with packet dropping is proposed. Depending on the place that the observer is put in the system, the network control systems with packet dropping are modeled as stochastic systems with the random variables satisfying the Bernoulli random binary distribution. The observer-based controller is designed to stabilize the networked system in the sense of mean square, and the prescribed H∞ disturbance attenuation level is achieved. The controller design problem is formulated as the feasibility of the convex optimization problem, which can be solved by a linear matrix inequality (LMI) approach. Numerical examples illustrate the effectiveness of the proposed methods.展开更多
这份报纸学习由使用一个活跃变化的采样时期方法与两导致网络的时间延期和包退学学生为联网的控制系统(NCS ) 设计 H 控制器的问题,在采样时期在一个有限集合切换的地方。一个新奇线性基于评价的方法被建议补偿包退学学生,和 H 控制...这份报纸学习由使用一个活跃变化的采样时期方法与两导致网络的时间延期和包退学学生为联网的控制系统(NCS ) 设计 H 控制器的问题,在采样时期在一个有限集合切换的地方。一个新奇线性基于评价的方法被建议补偿包退学学生,和 H 控制器设计被使用多客观的优化方法论也介绍。模拟结果说明活跃变化的采样时期方法和线性基于评价的包退学学生赔偿的有效性。展开更多
The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to des...The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.展开更多
The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a no...The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a novel networked control system model is described. This model includes many networkinduced features, such as multi-rate sampled-data, quantized signal, time-varying delay and packet dropout. By constructing suitable Lyapunov-Krasovskii functional, a less conservative stabilization criterion is established in terms of linear matrix inequalities. The quantized control strategy involves the updating values of the quantizer parameters μi(i = 1, 2)(μi take on countable sets of values which dependent on the information of the system measurement outputs and the control inputs). Furthermore, a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for dela...Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.展开更多
基金supported by National Natural Science Foundationof China (No. 69774011)
文摘A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.
基金the National Natural Science Foundation of China (90405011).
文摘An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.
基金supported by the National Natural Science Foundation of China(90816023).
文摘To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China (No.60421002)the National High Technology Research and Development Program of China under grant 863 Program (2006AA04 Z182).
文摘The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs with parameter uncertainty, network-induced delay, nonlinearity and data packet dropout in the transmission, a strict linear matrix inequality (LMI) criterion is proposed for robust stabilization of the uncertain nonlinear NCSs based on the Lyapunov stability theory. The maximum allowable transfer interval (MATI) can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
文摘This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is non- minimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
基金Supported by National Natural Science Foundation of China (61034005, 60974071), Program for New Century Excellent Talents in University (NCET-08-0101), and Fundamental Research Funds for the Central Universities (N100104102, Nl10604007)
文摘We consider optimal control problems for the flow of gas in a pipe network. The equations of motions are taken to be represented by a semi-linear model derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a given network and introduce a time discretization thereof. We then study the well-posedness of the corresponding time-discrete optimal control problem. In order to further reduce the complexity, we consider an instantaneous control strategy. The main part of the paper is concerned with a non-overlapping domain decomposition of the semi-linear elliptic optimal control problem on the graph into local problems on a small part of the network, ultimately on a single edge.
基金supported by the National Natural Science Foundation of China (No.60721062)863 Program of China (No.2006AA04Z182)+1 种基金Department of Science and Technology Project of Zhejiang Province (No.2006C31016)Science Foundation of Zhejiang SciTech University(No.0803817-Y)
文摘This paper is concerned with the problem of robust stability analysis for networked control systems (NCSs). A new NCS model is proposed under consideration of both the network-induced delay and parameter uncertainties. The parameter uncertainties appearing in NCSs are norm-bounded, and possibly time-varying. The conventional method and the descriptor system method are used to obtain maximum allowable delay bound (MADB) guaranteeing robust stability and stability of the NCSs, respectively, where the stability criteria are formulated in terms of linear matrix inequalities (LMIs). And the MADB can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to illustrate the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China (60574085, 60736026, 60721003), the National High Technology Research and Development Program of China (863 Program) (2006AA04Z428), and German Research Foundation (DFG)(DI 773/10)
基金supported by the National Science Foundation of China (No.60474003)Hunan Provincial Natural Science Foundation of China (07JJ6126)the Postdoctoral Science Foundation of Central South University
文摘This paper focuses on the problem of stability analysis and controller design for a class of delay systems based on networked control systems. By introducing some free matrix variables, some criteria for stability analysis and observer-based control law design can be obtained by the solving of linear matrix inequalities. A numerical example is also offered to prove the effectiveness of the proposed method.
文摘A new controller design problem of networked control systems with packet dropping is proposed. Depending on the place that the observer is put in the system, the network control systems with packet dropping are modeled as stochastic systems with the random variables satisfying the Bernoulli random binary distribution. The observer-based controller is designed to stabilize the networked system in the sense of mean square, and the prescribed H∞ disturbance attenuation level is achieved. The controller design problem is formulated as the feasibility of the convex optimization problem, which can be solved by a linear matrix inequality (LMI) approach. Numerical examples illustrate the effectiveness of the proposed methods.
基金Program for New Century Excellent Talents in University(NCET-04-0283)the Funds for Creative Research Groups of China(60521003)+2 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT0421)the State Key Program of National Natural Science Foundation of China(60534010)National Natural Science Foundation of China(60674021)
文摘这份报纸学习由使用一个活跃变化的采样时期方法与两导致网络的时间延期和包退学学生为联网的控制系统(NCS ) 设计 H 控制器的问题,在采样时期在一个有限集合切换的地方。一个新奇线性基于评价的方法被建议补偿包退学学生,和 H 控制器设计被使用多客观的优化方法论也介绍。模拟结果说明活跃变化的采样时期方法和线性基于评价的包退学学生赔偿的有效性。
基金This work was supported by the National Natural Science Foundation of China (No.60274014)Specialized+1 种基金Research Fund for the Doctoral Program of Higher Education (No. 20020487006)China Education Ministry' s Key Laboratory Foundation for Intelligent Ma
文摘The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.
基金supported by the National Natural Science Foundation of China (60574011)College Research Project of Liaoning Province(L2010522)
文摘The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a novel networked control system model is described. This model includes many networkinduced features, such as multi-rate sampled-data, quantized signal, time-varying delay and packet dropout. By constructing suitable Lyapunov-Krasovskii functional, a less conservative stabilization criterion is established in terms of linear matrix inequalities. The quantized control strategy involves the updating values of the quantizer parameters μi(i = 1, 2)(μi take on countable sets of values which dependent on the information of the system measurement outputs and the control inputs). Furthermore, a numerical example is given to illustrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China (60574011)the National Natural Science Foundation of Liaoning Province (2050770).
文摘Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.