In the paper, we investigate a globally coupled linear system with finite subunits subject to temporal periodic force and with multiplicative dichotomous noise. It is shown that, the global coupling among the subunits...In the paper, we investigate a globally coupled linear system with finite subunits subject to temporal periodic force and with multiplicative dichotomous noise. It is shown that, the global coupling among the subunits can hugely enhance the phenomenon of SR for the amplitude of the average mean field as the functions of the transition rate of the noise and that as the function of the frequency of the signal respectively.展开更多
A SLIM formalism to deal with a general, linearly coupled accelerator lattice is summarized. Its application to a wide range of accelerator calculations is emphasized.
In this paper, the conserved quantities are constructed using two methods. The first method is by making an ansatz of the conserved quantity and then using the definition of Poisson bracket to obtain the coefficients ...In this paper, the conserved quantities are constructed using two methods. The first method is by making an ansatz of the conserved quantity and then using the definition of Poisson bracket to obtain the coefficients in the ansatz. The main procedure for the second method is given as follows. Firstly, the coupled terms in Lagrangian are eliminated by changing the coordinate scales and rotating the coordinate axes, secondly, the conserved quantities are obtain in new coordinate directly, and at last, the conserved quantities are expressed in the original coordinates by using the inverse transform of the coordinates. The Noether symmetry and Lie symmetry of the infinitesimal transformations about the conserved quantities are also studied in this paper.展开更多
Complete synchronization could be reached between some chaotic and/or hyperchaotic systems under linear coupling. More generally, the conditional Lyapunov exponents are often calculated to confirm the stability of syn...Complete synchronization could be reached between some chaotic and/or hyperchaotic systems under linear coupling. More generally, the conditional Lyapunov exponents are often calculated to confirm the stability of synchronization and reliability of linear controllers. In this paper, detailed proof and measurement of the reliability of linear controllers are given by constructing a Lyapunov function in the exponential form. It is confirmed that two hyperchaotic systems can reach complete synchronization when two linear controllers are imposed on the driven system unidirectionally and the unknown parameters in the driving systems are estimated completely. Finally, it gives the general guidance to reach complete synchronization under linear coupling for other chaotic and hyperchaotic systems with unknown parameters.展开更多
In this paper,we study the existence of nontrivial solutions to the elliptic system {-△u=λv+Fu(x,u,v),x∈Ω,-△v=λu+Fv(x,u,v),x∈Ω,u=v=0,x∈∂Ω,where Ω■R^(N) is bounded with a smooth boundary.By the Morse theory...In this paper,we study the existence of nontrivial solutions to the elliptic system {-△u=λv+Fu(x,u,v),x∈Ω,-△v=λu+Fv(x,u,v),x∈Ω,u=v=0,x∈∂Ω,where Ω■R^(N) is bounded with a smooth boundary.By the Morse theory and the Gromoll-Meyer pair,we obtain multiple nontrivial vector solutions to this system.展开更多
A systematic study of the chaotic synchronization of Bose-Einstein condensed body is performed using linear cou- pling method based on Lyapunov stability theory, Sylvester's criterion, and Gerschgorin disc theorem. T...A systematic study of the chaotic synchronization of Bose-Einstein condensed body is performed using linear cou- pling method based on Lyapunov stability theory, Sylvester's criterion, and Gerschgorin disc theorem. The chaotic synchro- nization of Bose-Einstein condensed body in moving optical lattices is realized by linear coupling. The relationship be- tween the synchronization time and coupling coefficient is obtained. Both the single-variable coupling and double-variable coupling are effective. The results of numerical calculation prove that the chaotic synchronization of double-variable cou- pling is faster than that of single-variable coupling and small coupling coefficient can achieve the chaotic synchronization. Weak noise has little influence on synchronization effect, so the linear coupling technology is suitable for the chaotic synchronization of Bose-Einstein condensate.展开更多
The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructe...The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.展开更多
Beam transport network(BTN)with small world(SW)(so-called BTN-SW)and Lorenz chaotic connectednetwork with scale-free(SF)are taken as two typical examples,we proposed a global linear coupling and combined withlocal err...Beam transport network(BTN)with small world(SW)(so-called BTN-SW)and Lorenz chaotic connectednetwork with scale-free(SF)are taken as two typical examples,we proposed a global linear coupling and combined withlocal error feedback methods in sub-networks to realize multi-goal control method of halo and chaos in two networksabove.The simulation results show that the methods above is effective for any chaotic connected networks and has apotential of applications in based-halo-chaos secure communication.展开更多
The aim of this paper is the introduction of a new approach to 3D modelling of elastic piecewise homogeneous media, in particular Earth crust and upper Mantle. The method is based on the principle of tomography with E...The aim of this paper is the introduction of a new approach to 3D modelling of elastic piecewise homogeneous media, in particular Earth crust and upper Mantle. The method is based on the principle of tomography with Earthquake as a source of the signal and receiver stations on the surface. The wave propagation in solid media is described by a system of three strongly coupled hyperbolic equations with piece - wise constant coefitients. The characteristic set and hi-characteristic curves of this system are computed in a homogeneous half-space with free boundary and the formulae of reflection and diffraction of the hi-characteristics on the internal boundaries of the media. Applications of the characteristic set and bi-eharacteristic curves for the inverse problem in geophysics and Earth modelling are given.展开更多
Beam Position Monitors(BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system(CADS) Proton linac are of the capacitive pick-up type.They provide higher output signals than that of the induc...Beam Position Monitors(BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system(CADS) Proton linac are of the capacitive pick-up type.They provide higher output signals than that of the inductive type.This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac,including the pick-ups,the test bench and the read-out electronics.The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain.展开更多
To solve the problems encountered in practical processes of magneto-optical sensing, the infinitesimal distributed-parameter model and finite-element accumulation of different dielectric properties of micromaterials w...To solve the problems encountered in practical processes of magneto-optical sensing, the infinitesimal distributed-parameter model and finite-element accumulation of different dielectric properties of micromaterials were used to describe the evolution of light polarization states, instead of the previously commonly used method of lumped-parameter simulation, thus essentially explaining the mechanism of sensing, magneto-optical effects, and related factors, and achieving multiphysics coupling using the COMSOL finite-element analysis method. Considering the cases of the Faraday effect without and with line birefringence, the magneto-optical effect and output characteristics of an infinitesimal magneto-optical sensor were simulated and studied. The results verified the effectiveness of the infinitesimal sensor model. Because the magnetic field, stress, and temperature changes alter the dielectric properties of magneto-optical materials, the finite-element accumulation method lays a good foundation for research on theoretical analysis and performance of magneto-optical sensors affected by factors such as the magnetic field, temperature, and stress.展开更多
基金supported by the Ningbo's Supplement of National Natural Science Foundation of China under Grant No.10375009SRF for ROCS,SEM,and K.C.Wong Magna Fund in Ningbo University of China
文摘In the paper, we investigate a globally coupled linear system with finite subunits subject to temporal periodic force and with multiplicative dichotomous noise. It is shown that, the global coupling among the subunits can hugely enhance the phenomenon of SR for the amplitude of the average mean field as the functions of the transition rate of the noise and that as the function of the frequency of the signal respectively.
基金Supported by Department of Energy (DE-AC02-76SF00515)
文摘A SLIM formalism to deal with a general, linearly coupled accelerator lattice is summarized. Its application to a wide range of accelerator calculations is emphasized.
文摘In this paper, the conserved quantities are constructed using two methods. The first method is by making an ansatz of the conserved quantity and then using the definition of Poisson bracket to obtain the coefficients in the ansatz. The main procedure for the second method is given as follows. Firstly, the coupled terms in Lagrangian are eliminated by changing the coordinate scales and rotating the coordinate axes, secondly, the conserved quantities are obtain in new coordinate directly, and at last, the conserved quantities are expressed in the original coordinates by using the inverse transform of the coordinates. The Noether symmetry and Lie symmetry of the infinitesimal transformations about the conserved quantities are also studied in this paper.
基金Project supported partially by the National Natural Science Foundation of China(Grant No.11265008)
文摘Complete synchronization could be reached between some chaotic and/or hyperchaotic systems under linear coupling. More generally, the conditional Lyapunov exponents are often calculated to confirm the stability of synchronization and reliability of linear controllers. In this paper, detailed proof and measurement of the reliability of linear controllers are given by constructing a Lyapunov function in the exponential form. It is confirmed that two hyperchaotic systems can reach complete synchronization when two linear controllers are imposed on the driven system unidirectionally and the unknown parameters in the driving systems are estimated completely. Finally, it gives the general guidance to reach complete synchronization under linear coupling for other chaotic and hyperchaotic systems with unknown parameters.
基金Supported by KZ202010028048,NSFC(12001382,11771302,11601353)Beijing Education Committee(KM201710009012,6943).
文摘In this paper,we study the existence of nontrivial solutions to the elliptic system {-△u=λv+Fu(x,u,v),x∈Ω,-△v=λu+Fv(x,u,v),x∈Ω,u=v=0,x∈∂Ω,where Ω■R^(N) is bounded with a smooth boundary.By the Morse theory and the Gromoll-Meyer pair,we obtain multiple nontrivial vector solutions to this system.
基金supported by the Industrial Technology Research and Development Special Project of Jilin Province,China(Grant No.2013C46)the Natural Science Foundation of Jilin Province,China(Grant No.20101510)
文摘A systematic study of the chaotic synchronization of Bose-Einstein condensed body is performed using linear cou- pling method based on Lyapunov stability theory, Sylvester's criterion, and Gerschgorin disc theorem. The chaotic synchro- nization of Bose-Einstein condensed body in moving optical lattices is realized by linear coupling. The relationship be- tween the synchronization time and coupling coefficient is obtained. Both the single-variable coupling and double-variable coupling are effective. The results of numerical calculation prove that the chaotic synchronization of double-variable cou- pling is faster than that of single-variable coupling and small coupling coefficient can achieve the chaotic synchronization. Weak noise has little influence on synchronization effect, so the linear coupling technology is suitable for the chaotic synchronization of Bose-Einstein condensate.
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grant Nos. 70371068 and 10247005
文摘The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.
基金the Key Projects of National Natural Science Foundation of China under Grant No.70431002National Natural Science Foundation of China under Grant No.10647001
文摘Beam transport network(BTN)with small world(SW)(so-called BTN-SW)and Lorenz chaotic connectednetwork with scale-free(SF)are taken as two typical examples,we proposed a global linear coupling and combined withlocal error feedback methods in sub-networks to realize multi-goal control method of halo and chaos in two networksabove.The simulation results show that the methods above is effective for any chaotic connected networks and has apotential of applications in based-halo-chaos secure communication.
文摘The aim of this paper is the introduction of a new approach to 3D modelling of elastic piecewise homogeneous media, in particular Earth crust and upper Mantle. The method is based on the principle of tomography with Earthquake as a source of the signal and receiver stations on the surface. The wave propagation in solid media is described by a system of three strongly coupled hyperbolic equations with piece - wise constant coefitients. The characteristic set and hi-characteristic curves of this system are computed in a homogeneous half-space with free boundary and the formulae of reflection and diffraction of the hi-characteristics on the internal boundaries of the media. Applications of the characteristic set and bi-eharacteristic curves for the inverse problem in geophysics and Earth modelling are given.
基金Supported by National Natural Science Foundation of China(11405240)"Western Light" Talents Training Program of Chinese Academy of Sciences
文摘Beam Position Monitors(BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system(CADS) Proton linac are of the capacitive pick-up type.They provide higher output signals than that of the inductive type.This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac,including the pick-ups,the test bench and the read-out electronics.The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain.
基金supported by the National Natural Science Foundation of China(Grant No.51277066)
文摘To solve the problems encountered in practical processes of magneto-optical sensing, the infinitesimal distributed-parameter model and finite-element accumulation of different dielectric properties of micromaterials were used to describe the evolution of light polarization states, instead of the previously commonly used method of lumped-parameter simulation, thus essentially explaining the mechanism of sensing, magneto-optical effects, and related factors, and achieving multiphysics coupling using the COMSOL finite-element analysis method. Considering the cases of the Faraday effect without and with line birefringence, the magneto-optical effect and output characteristics of an infinitesimal magneto-optical sensor were simulated and studied. The results verified the effectiveness of the infinitesimal sensor model. Because the magnetic field, stress, and temperature changes alter the dielectric properties of magneto-optical materials, the finite-element accumulation method lays a good foundation for research on theoretical analysis and performance of magneto-optical sensors affected by factors such as the magnetic field, temperature, and stress.