The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts high...The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.展开更多
As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physic...As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint展开更多
An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial visco...An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode II dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.展开更多
The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an...The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamic stress intensity factor at the crack tip was given. A Green's function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed.展开更多
280 connecting rod is one of the most important parts for 16V280ZJ diesel locomotive, so it needs much better mechanical performance. However, the crack is often generated at the middle section of connecting rod body ...280 connecting rod is one of the most important parts for 16V280ZJ diesel locomotive, so it needs much better mechanical performance. However, the crack is often generated at the middle section of connecting rod body on heat treatment process. A temperature-phase transformation-stress coupled 3D non-linear mathematical model has been developed to analyze the reasons of cracking. The simulation and experimental results show that the compressive stress on the cracking position is close to the fracture stress of connecting rod and the reasons of crack are mainly contributed to the carbon content excess of original material or the aging of quenchant.展开更多
Refined non-linear static or dynamic analyses of reinforced concrete structures require the knowledge of the actual force-displacement or bending moment-rotation curves of each structural member, which depend on the c...Refined non-linear static or dynamic analyses of reinforced concrete structures require the knowledge of the actual force-displacement or bending moment-rotation curves of each structural member, which depend on the crack widths and on the crack pattern, and after all on the slip between concrete and reinforcing steel. For this reason the definition of improved local models taking into account all these local aspects is a fundamental prerequisite for advanced assessment of r.c. structures. A numerical procedure which allows to predict the relative displacement between steel reinforcement and the surrounding concrete in a reinforced concrete element, once assigned the stress in the naked steel bar and the bond-slip law is discussed. The method provides as final outcomes the sequence of crack openings and the individual crack widths, regardless of the particular bond-slip correlation adopted. The proposed procedure is implemented referring to two relevant experimental case studies, demonstrating that it is able to predict satisfactorily actual strain fields and slips along the investigated reinforced concrete elements.展开更多
基金supported by the National Key R&D Program of China (Grant No.2018YFC0407002)the National Natural Science Foundation of China(Grant Nos.11502033 and 51879014)
文摘The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.
文摘As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint
基金Project supported by the Doctor Science Research Startup Foundation of Harbin Institute of Technology (No.01502485)
文摘An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode II dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.
文摘The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamic stress intensity factor at the crack tip was given. A Green's function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed.
基金supported by the National Natural Science Foundation of China(No.50075053)
文摘280 connecting rod is one of the most important parts for 16V280ZJ diesel locomotive, so it needs much better mechanical performance. However, the crack is often generated at the middle section of connecting rod body on heat treatment process. A temperature-phase transformation-stress coupled 3D non-linear mathematical model has been developed to analyze the reasons of cracking. The simulation and experimental results show that the compressive stress on the cracking position is close to the fracture stress of connecting rod and the reasons of crack are mainly contributed to the carbon content excess of original material or the aging of quenchant.
文摘Refined non-linear static or dynamic analyses of reinforced concrete structures require the knowledge of the actual force-displacement or bending moment-rotation curves of each structural member, which depend on the crack widths and on the crack pattern, and after all on the slip between concrete and reinforcing steel. For this reason the definition of improved local models taking into account all these local aspects is a fundamental prerequisite for advanced assessment of r.c. structures. A numerical procedure which allows to predict the relative displacement between steel reinforcement and the surrounding concrete in a reinforced concrete element, once assigned the stress in the naked steel bar and the bond-slip law is discussed. The method provides as final outcomes the sequence of crack openings and the individual crack widths, regardless of the particular bond-slip correlation adopted. The proposed procedure is implemented referring to two relevant experimental case studies, demonstrating that it is able to predict satisfactorily actual strain fields and slips along the investigated reinforced concrete elements.