An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a ...An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a resemblance to the velocity model used in some seismic tomography codes. The consensus in representation method of density model and velocity model facilitates the seismic-gravity-integrated interpretation or simultaneous inversion. The numerical test of synthetic data shows that although the analytical gravity formula for linear density distribution is more complex than that for piecewise constant density distribution, it takes less time to calculate the gravity effect with linear density model than that with piecewise constant density model. In addition, this method is used in the integrated interpretation of 3D seismological tomography and gravity data in Dabie Mountain area.展开更多
Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilan...Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.展开更多
In this work fibers derived from coffee</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> hulls ha</span><span style="font-f...In this work fibers derived from coffee</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> hulls ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> been incorporated into Linear Low Density Polyethylene (LLDPE). The influence of the filler content on </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">thermal and physicomechanical properties of the composites obtained was assessed. The results showed that the incorporation of fibers was able to improve the thermostability of LLDPE/Coffee hulls fibers;comparing the treated fiber composite with untreated fiber composites, the chemical treatment reduces by 58.3% the water absorption, while increasing the elongation and tensile strength by about 48% and 17% respectively. Moreover, due to better interfacial interaction induced by MAPE, the corresponding composite exhibited better properties compared to the untreated fiber composite. Results are indicative of the fact that both mercerization and MAPE (coupling agent) have significant positive effects on the fib</span><span style="font-family:Verdana;">er</span><span style="font-family:Verdana;">-matrix interaction in terms of adhesion, wetting and dispersion, this treatment produced a better fiber distribution and consequently a more uniform composite morphology without voids and gaps between the fibers and the matrix, allowing the possibility to use higher fiber contents (up to 30% wt.) with acceptable mechanical properties.展开更多
Generally, ring spun yarns are manufactured from roving which is produced by roving frame. In this paper, an experiment has been done producing ring spun cotton yarn directly from finisher drawn sliver eliminatin...Generally, ring spun yarns are manufactured from roving which is produced by roving frame. In this paper, an experiment has been done producing ring spun cotton yarn directly from finisher drawn sliver eliminating the roving frame. Total 3 types of yarn with the various linear density of 8 Ne, 10 Ne & 12 Ne were produced using a roving frame and without using a roving frame. In the next step, physical and mechanical properties of those yarns including unevenness, imperfections, hairiness & tenacity were investigated. The result showed that ring spun cotton yarns produced from sliver exhibited inferior physical and mechanical properties compared with samples from the conventional ring spinning system.展开更多
Straw utilization is a key issue related to agricultural production and air pollution control.In this study,a novel extrusion process was proposed to improve the physical and mechanical properties of the straw-reinfor...Straw utilization is a key issue related to agricultural production and air pollution control.In this study,a novel extrusion process was proposed to improve the physical and mechanical properties of the straw-reinforced linear low-density polyethylene(LLDPE)composite.Instead of crushing the straw and mixing it with plastic matrix,the new method mixes straw with plastic matrix in its original form.The intact long rice straws were parallelly spread on the LLDPE film and then rolled up together into a prefabricated roll.The rolls experienced three extrusion processes as follows:(1)twin-screw melting,cooling and crushing,single-screw extruding;(2)twin-screw melting and single-screw extruding;(3)directly single-screw extruding.The testing results showed that the straw/LLDPE composite(with a ratio of 6:4)prepared by Method(2)exhibited optimized properties.Characterization by scanning electron microscopy indicated that the damage to rice straw fibers was relatively minor,the orientation of long fibers was good,and the binding of fibers with the LLDPE matrix was excellent in this case.The results of dynamic mechanical testing(DMA),differential scanning calorimetry(DSC)and thermogravimetric(TG)analysis demonstrated that composites prepared by the new process exhibited significantly improved thermal stability and energy storage modulus,compared with those prepared by conventional processes(e.g.,extruded straw particles/LLDPE composite).The new proposed method yielded significantly enhanced mechanical properties while reducing dust pollution.展开更多
In this paper cotton hollow yarns were obtained from the core spun yams which were produced on a little modified conventional experiment ring frame with water soluble staple PVA yam as the core. For comparison, yams w...In this paper cotton hollow yarns were obtained from the core spun yams which were produced on a little modified conventional experiment ring frame with water soluble staple PVA yam as the core. For comparison, yams with same linear densities, same twists of the sheath, different linear densities, different twist directions of the core were prepared. The results show that the tensile strengths of the hollow yarns decrease first, then increase and decrease again, at last the tensile strength trends to reach a steady state with the soluble PVA core extraction proceeding. And when the sheath linear densities of the core spun yams are constant, their twist and twist direction are same as that of the core it will be easier to remove the core of the yam with a higher core size. When the linear densities of the sheath and the core are all constant, the twists of them are same, it will be easier to remove the core of the yam with a different twist direction of core to the sheath.展开更多
To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or ...To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or tension,span length,temperature change,elastic deformation,and the Earth’s rotation)of the vertical sag are summarized,and their validity is verified through actual measurements.Finally,the essential factors affecting vertical sag,i.e.,the specific strength and length,are discussed.It is believed that the vertical sag of a stretched wire is proportional to the square of the length and inversely proportional to the specific strength of the material.展开更多
Coir fiber is derived from the coconut shells and considered to be an economical and natural material. In order to further extend its application fields,the geometry and microstructure of the coir fiber were thoroughl...Coir fiber is derived from the coconut shells and considered to be an economical and natural material. In order to further extend its application fields,the geometry and microstructure of the coir fiber were thoroughly investigated in this research. The single fiber length measurement was carried out,and it was revealed that the length of the coir fiber was between 8 and 337 mm. Length distribution of the coir fiber was simulated by using the computer technology,and was found to be in coincidence with that of most natural fibers. The grouping measurement analysis was used to study the length-weight distribution and length-linear density distribution of the fiber. It was found that the average linear density was 27.89 tex and the linear density was between 18.265 and 70.442 tex. The length-weight distribution of the coir fiber showed a Poisson pattern,and the weight of fibers with the length between 50 and 230 mm accounted for 85.28% of the total fibers measured. In this research,scanning electron microscope (SEM) was applied to observe the morphological changes of coir fiber before and after alkali treatment;and the result shows that alkali treatment leads to the removal of lignin and pectin from both the cuticle and the inside walls,which is beneficial for the interfacial adhesion with polymer matrix in composite fabrication.展开更多
In the article, the methods of processing and obtaining multicomponent raw materials were investigated with the properties of multicomponent threads obtained from fiber waste cluster enterprises in textile production,...In the article, the methods of processing and obtaining multicomponent raw materials were investigated with the properties of multicomponent threads obtained from fiber waste cluster enterprises in textile production, the interrelation of the components sorting composition. To solve the problem, we used the cause-effect relationship of information theory from the grid planning Matrix, solving the dependence of raw materials, physical and mechanical parameters and the established characteristics of the product. Empirical correlations were obtained on the nature and mechanism of the relationship between factors, which allowed the system to establish a theory of control and prediction of behavior. The methods of evaluation used in this study make it possible to expand the information base with respect to these indicators and to use them in the production of fabrics and threads with established characteristics.展开更多
In this study, effects of oscillatory shear with different frequencies (0-2.5 Hz) and amplitudes (0-20 mm) on the mechanical properties and crystalline morphology of linear low density polyethylene (LLDPE) were ...In this study, effects of oscillatory shear with different frequencies (0-2.5 Hz) and amplitudes (0-20 mm) on the mechanical properties and crystalline morphology of linear low density polyethylene (LLDPE) were investigated. It was found that the mechanical properties of LLDPE are improved because of the more perfect crystalline structure when LLDPE crystallizes under low-frequency and small-amplitude (0.2 Hz/4 mm) oscillatory shear. The mechanical properties can be further improved by increasing either the frequency or the amplitude of oscillatory shear. The Young's modulus and tensile strength of LLDPE are improved by 27% and 20%, respectively, when the frequency is increased to 2.5 Hz and the amplitude is maintained at 4 mm; while the Young's modulus and tensile strength are improved by 49% and 47%, respectively, when the amplitude is increased to 20 mm and the frequency is remained as 0.2 Hz. The crystallinity and microstructure of LLDPE under different oscillatory shear conditions were investigated by using differential scanning calorimetry, wide angle X-ray diffraction and scanning electron microscopy to shed light on the mechanism for the improvement of mechanical properties.展开更多
Based on successive multiple-step isothermal crystallization and self-nucleation annealing methods, a novel semi-quantitative method for the characterization of segment distribution in linear low density polyethylene ...Based on successive multiple-step isothermal crystallization and self-nucleation annealing methods, a novel semi-quantitative method for the characterization of segment distribution in linear low density polyethylene (LLDPE) was established by treating the thermal analysis data using the Gibbs-Thomson equation. The method was used to describe the segment distribution of Ziegler-Natta catalyzed LLDPE (Z-N LLDPE), metallocene catalyzed LLDPE (m-LLDPE) and two commercial LLDPEs with wide molecular weight distribution. The differences of the results obtained from the two thermally treated samples were compared. The results of segment distribution of the polymers were discussed according to their microstructure data and were compared with their characteristics. It can be deduced from the results that this characterization method is effective to characterize the sequence structure of the branched ethylene copolymers.展开更多
Light carries linear momentum and can therefore exert a radiation force on the objects that it encounters. This established fact enabled optical manipulation of micro/nano-sized objects, as well as macroscopic objects...Light carries linear momentum and can therefore exert a radiation force on the objects that it encounters. This established fact enabled optical manipulation of micro/nano-sized objects, as well as macroscopic objects such as solar sails, among many other important applications. While these efforts benefit from the average value of light’s linear momentum, in this article, we propose exploiting the temporal variation of light’s linear momentum to achieve an oscillatory force of microNewton amplitude and picosecond period. We validate our proposal by analytical calculations and time domain simulations of Maxwell’s equations in the case of a high-index quarter-wave slab irradiated by a terahertz plane electromagnetic wave. In particular, we show that for plane wave terahertz light of electric field amplitude 5000 V/m and frequency 4.8 THz, an oscillatory radiation pressure of amplitude 1.8 × 10<sup>-4</sup> N/m<sup>2</sup> and 0.1 ps period can be achieved.展开更多
Spatiotemporal vortices of light,featuring transverse orbital angular momentum(OAM)and energy circulation in the spatiotemporal domain,have received increasing attention recently.The experimental realization of the co...Spatiotemporal vortices of light,featuring transverse orbital angular momentum(OAM)and energy circulation in the spatiotemporal domain,have received increasing attention recently.The experimental realization of the controllable generation of spatiotemporal vortices triggers a series of research in this field.This review article covers the latest developments of spatiotemporal vortices of light ranging from theoretical physics,experimental generation schemes,and characterization methods,to applications and future perspectives.This new degree of freedom in photonic OAM endowed by spatiotemporal vortices paves the way to the discovery of novel physical mechanisms and photonic applications in light science.展开更多
In this work,the microstructural evolution,micro-crack formation,and mechanical anisotropy of the selective laser melted(SLM)carbon-free Mar-M509 Co-based superalloy were systematically studied under different linear ...In this work,the microstructural evolution,micro-crack formation,and mechanical anisotropy of the selective laser melted(SLM)carbon-free Mar-M509 Co-based superalloy were systematically studied under different linear energy densities(LED).Observation shows that the SLM Mar-M509 superalloy possesses a fully dense structure,whereas some microcracks exist along the building direction.The electron backscatter diffraction results reveal that dominant columnar grains tend to elongate along the building direction parallel to the XZ plane.Meanwhile,both a<001>near fiber texture and a{100}<001>near sheet texture are observed in different specimens.For the specimen with fiber texture,a high misorientation angle exists among different columnar grains,which aggravated the generation of micro-cracks under thermal stress.Higher LED results in higher micro-crack density in the SLM specimen due to higher thermal stress.Mar-M509 specimen fabricated under lower LED exhibits higher tensile strength due to more significant grain refinement.More prominent anisotropy of tensile performance was found in the high LED specimen,which can be attributed to the higher density of micro-cracks and crystallographic texture.Furthermore,the SLM Mar-M509 superalloy exhibits better mechanical properties than the traditional cast technique.In summary,this work can contribute to the development and the future application of SLM-fabricated Co-based superalloy.展开更多
文摘An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a resemblance to the velocity model used in some seismic tomography codes. The consensus in representation method of density model and velocity model facilitates the seismic-gravity-integrated interpretation or simultaneous inversion. The numerical test of synthetic data shows that although the analytical gravity formula for linear density distribution is more complex than that for piecewise constant density distribution, it takes less time to calculate the gravity effect with linear density model than that with piecewise constant density model. In addition, this method is used in the integrated interpretation of 3D seismological tomography and gravity data in Dabie Mountain area.
基金Project(20574020) supported by the National Natural Science Foundation of ChinaProject(20061001) supported by the Opening Project of the Key Laboratory of Polymer Processing Engineering, Ministry of Education, ChinaProject (20060106-2) supported by Guangdong Key Projects
文摘Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.
文摘In this work fibers derived from coffee</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> hulls ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> been incorporated into Linear Low Density Polyethylene (LLDPE). The influence of the filler content on </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">thermal and physicomechanical properties of the composites obtained was assessed. The results showed that the incorporation of fibers was able to improve the thermostability of LLDPE/Coffee hulls fibers;comparing the treated fiber composite with untreated fiber composites, the chemical treatment reduces by 58.3% the water absorption, while increasing the elongation and tensile strength by about 48% and 17% respectively. Moreover, due to better interfacial interaction induced by MAPE, the corresponding composite exhibited better properties compared to the untreated fiber composite. Results are indicative of the fact that both mercerization and MAPE (coupling agent) have significant positive effects on the fib</span><span style="font-family:Verdana;">er</span><span style="font-family:Verdana;">-matrix interaction in terms of adhesion, wetting and dispersion, this treatment produced a better fiber distribution and consequently a more uniform composite morphology without voids and gaps between the fibers and the matrix, allowing the possibility to use higher fiber contents (up to 30% wt.) with acceptable mechanical properties.
文摘Generally, ring spun yarns are manufactured from roving which is produced by roving frame. In this paper, an experiment has been done producing ring spun cotton yarn directly from finisher drawn sliver eliminating the roving frame. Total 3 types of yarn with the various linear density of 8 Ne, 10 Ne & 12 Ne were produced using a roving frame and without using a roving frame. In the next step, physical and mechanical properties of those yarns including unevenness, imperfections, hairiness & tenacity were investigated. The result showed that ring spun cotton yarns produced from sliver exhibited inferior physical and mechanical properties compared with samples from the conventional ring spinning system.
基金supported by the Natural Science Foundation of China(No.32071704).
文摘Straw utilization is a key issue related to agricultural production and air pollution control.In this study,a novel extrusion process was proposed to improve the physical and mechanical properties of the straw-reinforced linear low-density polyethylene(LLDPE)composite.Instead of crushing the straw and mixing it with plastic matrix,the new method mixes straw with plastic matrix in its original form.The intact long rice straws were parallelly spread on the LLDPE film and then rolled up together into a prefabricated roll.The rolls experienced three extrusion processes as follows:(1)twin-screw melting,cooling and crushing,single-screw extruding;(2)twin-screw melting and single-screw extruding;(3)directly single-screw extruding.The testing results showed that the straw/LLDPE composite(with a ratio of 6:4)prepared by Method(2)exhibited optimized properties.Characterization by scanning electron microscopy indicated that the damage to rice straw fibers was relatively minor,the orientation of long fibers was good,and the binding of fibers with the LLDPE matrix was excellent in this case.The results of dynamic mechanical testing(DMA),differential scanning calorimetry(DSC)and thermogravimetric(TG)analysis demonstrated that composites prepared by the new process exhibited significantly improved thermal stability and energy storage modulus,compared with those prepared by conventional processes(e.g.,extruded straw particles/LLDPE composite).The new proposed method yielded significantly enhanced mechanical properties while reducing dust pollution.
基金Supported by the Foundation of Tianjin Science and Technology Commission (No.043104711)
文摘In this paper cotton hollow yarns were obtained from the core spun yams which were produced on a little modified conventional experiment ring frame with water soluble staple PVA yam as the core. For comparison, yams with same linear densities, same twists of the sheath, different linear densities, different twist directions of the core were prepared. The results show that the tensile strengths of the hollow yarns decrease first, then increase and decrease again, at last the tensile strength trends to reach a steady state with the soluble PVA core extraction proceeding. And when the sheath linear densities of the core spun yams are constant, their twist and twist direction are same as that of the core it will be easier to remove the core of the yam with a higher core size. When the linear densities of the sheath and the core are all constant, the twists of them are same, it will be easier to remove the core of the yam with a different twist direction of core to the sheath.
基金Large Research Infrastructures“China initiative Accelerator Driven System”(No.2017-000052-75-01-000590).
文摘To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or tension,span length,temperature change,elastic deformation,and the Earth’s rotation)of the vertical sag are summarized,and their validity is verified through actual measurements.Finally,the essential factors affecting vertical sag,i.e.,the specific strength and length,are discussed.It is believed that the vertical sag of a stretched wire is proportional to the square of the length and inversely proportional to the specific strength of the material.
基金Tianjin Universities Science and Technology Development Fund Project ,China (No.20041401)
文摘Coir fiber is derived from the coconut shells and considered to be an economical and natural material. In order to further extend its application fields,the geometry and microstructure of the coir fiber were thoroughly investigated in this research. The single fiber length measurement was carried out,and it was revealed that the length of the coir fiber was between 8 and 337 mm. Length distribution of the coir fiber was simulated by using the computer technology,and was found to be in coincidence with that of most natural fibers. The grouping measurement analysis was used to study the length-weight distribution and length-linear density distribution of the fiber. It was found that the average linear density was 27.89 tex and the linear density was between 18.265 and 70.442 tex. The length-weight distribution of the coir fiber showed a Poisson pattern,and the weight of fibers with the length between 50 and 230 mm accounted for 85.28% of the total fibers measured. In this research,scanning electron microscope (SEM) was applied to observe the morphological changes of coir fiber before and after alkali treatment;and the result shows that alkali treatment leads to the removal of lignin and pectin from both the cuticle and the inside walls,which is beneficial for the interfacial adhesion with polymer matrix in composite fabrication.
文摘In the article, the methods of processing and obtaining multicomponent raw materials were investigated with the properties of multicomponent threads obtained from fiber waste cluster enterprises in textile production, the interrelation of the components sorting composition. To solve the problem, we used the cause-effect relationship of information theory from the grid planning Matrix, solving the dependence of raw materials, physical and mechanical parameters and the established characteristics of the product. Empirical correlations were obtained on the nature and mechanism of the relationship between factors, which allowed the system to establish a theory of control and prediction of behavior. The methods of evaluation used in this study make it possible to expand the information base with respect to these indicators and to use them in the production of fabrics and threads with established characteristics.
基金financially supported by the National Natural Science Foundation of China(Nos.51373153 and 51073139)the Zhejiang Provincial Natural Science Foundation of China(No.LY13E030002)the Zhejiang Leading Team of S&T Innovation(No.2011R50005)
文摘In this study, effects of oscillatory shear with different frequencies (0-2.5 Hz) and amplitudes (0-20 mm) on the mechanical properties and crystalline morphology of linear low density polyethylene (LLDPE) were investigated. It was found that the mechanical properties of LLDPE are improved because of the more perfect crystalline structure when LLDPE crystallizes under low-frequency and small-amplitude (0.2 Hz/4 mm) oscillatory shear. The mechanical properties can be further improved by increasing either the frequency or the amplitude of oscillatory shear. The Young's modulus and tensile strength of LLDPE are improved by 27% and 20%, respectively, when the frequency is increased to 2.5 Hz and the amplitude is maintained at 4 mm; while the Young's modulus and tensile strength are improved by 49% and 47%, respectively, when the amplitude is increased to 20 mm and the frequency is remained as 0.2 Hz. The crystallinity and microstructure of LLDPE under different oscillatory shear conditions were investigated by using differential scanning calorimetry, wide angle X-ray diffraction and scanning electron microscopy to shed light on the mechanism for the improvement of mechanical properties.
基金This work was supported by the Science Foundations of State Key Laboratory of Polymer Physics and Chemisny, Chinese Academy of Sciences (00-B-15) and National Natural Science Foundation of China (No. B040504).
文摘Based on successive multiple-step isothermal crystallization and self-nucleation annealing methods, a novel semi-quantitative method for the characterization of segment distribution in linear low density polyethylene (LLDPE) was established by treating the thermal analysis data using the Gibbs-Thomson equation. The method was used to describe the segment distribution of Ziegler-Natta catalyzed LLDPE (Z-N LLDPE), metallocene catalyzed LLDPE (m-LLDPE) and two commercial LLDPEs with wide molecular weight distribution. The differences of the results obtained from the two thermally treated samples were compared. The results of segment distribution of the polymers were discussed according to their microstructure data and were compared with their characteristics. It can be deduced from the results that this characterization method is effective to characterize the sequence structure of the branched ethylene copolymers.
文摘Light carries linear momentum and can therefore exert a radiation force on the objects that it encounters. This established fact enabled optical manipulation of micro/nano-sized objects, as well as macroscopic objects such as solar sails, among many other important applications. While these efforts benefit from the average value of light’s linear momentum, in this article, we propose exploiting the temporal variation of light’s linear momentum to achieve an oscillatory force of microNewton amplitude and picosecond period. We validate our proposal by analytical calculations and time domain simulations of Maxwell’s equations in the case of a high-index quarter-wave slab irradiated by a terahertz plane electromagnetic wave. In particular, we show that for plane wave terahertz light of electric field amplitude 5000 V/m and frequency 4.8 THz, an oscillatory radiation pressure of amplitude 1.8 × 10<sup>-4</sup> N/m<sup>2</sup> and 0.1 ps period can be achieved.
基金the National Natural Science Foundation of China(NSFC)[92050202(Q.Z.),61875245(C.W.)]Shanghai Science and Technology Committee[19060502500(Q.Z.)]+1 种基金Wuhan Science and Technology Bureau[2020010601012169(C.W.)]the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)[2022R1A2C1091890(A.C.)].
文摘Spatiotemporal vortices of light,featuring transverse orbital angular momentum(OAM)and energy circulation in the spatiotemporal domain,have received increasing attention recently.The experimental realization of the controllable generation of spatiotemporal vortices triggers a series of research in this field.This review article covers the latest developments of spatiotemporal vortices of light ranging from theoretical physics,experimental generation schemes,and characterization methods,to applications and future perspectives.This new degree of freedom in photonic OAM endowed by spatiotemporal vortices paves the way to the discovery of novel physical mechanisms and photonic applications in light science.
基金financially supported by the National Key Research and Development Program of China(No.2019YFA0705300)the Chinese National Science and Technology Major Project“Aeroengine and Gas Turbine”(No.2017-VII0008-0102)+4 种基金the Shanghai Science and Technology Committee(No.19DZ1100704)Shanghai Shuguang Program(No.20SG42)Shanghai Sailing Program(No.19YF1415900)the National Natural Science Foundation of China(No.52001191)the Shanghai Rising-Star Program(No.20QA1403800)。
文摘In this work,the microstructural evolution,micro-crack formation,and mechanical anisotropy of the selective laser melted(SLM)carbon-free Mar-M509 Co-based superalloy were systematically studied under different linear energy densities(LED).Observation shows that the SLM Mar-M509 superalloy possesses a fully dense structure,whereas some microcracks exist along the building direction.The electron backscatter diffraction results reveal that dominant columnar grains tend to elongate along the building direction parallel to the XZ plane.Meanwhile,both a<001>near fiber texture and a{100}<001>near sheet texture are observed in different specimens.For the specimen with fiber texture,a high misorientation angle exists among different columnar grains,which aggravated the generation of micro-cracks under thermal stress.Higher LED results in higher micro-crack density in the SLM specimen due to higher thermal stress.Mar-M509 specimen fabricated under lower LED exhibits higher tensile strength due to more significant grain refinement.More prominent anisotropy of tensile performance was found in the high LED specimen,which can be attributed to the higher density of micro-cracks and crystallographic texture.Furthermore,the SLM Mar-M509 superalloy exhibits better mechanical properties than the traditional cast technique.In summary,this work can contribute to the development and the future application of SLM-fabricated Co-based superalloy.