This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by usin...This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by using Residue Theorem,the general form of the contour integral representation for the homogeneous complex differential equation is obtained,which can be degenerated to classical results in real line.As for inhomogeneous complex differential equations with constant coefficients,we construct the integral expression of the particular solution for any continuous forcing term,and give rigorous proof via Residue Theorem.Thus the general solutions of inhomogeneous complex differential equations are also given.The main purpose of this paper is to give a foundation for a complete theory of linear complex differential equations with constant coefficients by a contour integral method.The results can not only solve the inhomogeneous complex differential equation well,but also explain the forms that are difficult to be understood in the classical solutions.展开更多
In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential d...In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.展开更多
With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various...With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.展开更多
We establish the exponential stability of fast traveling pulse solutions to nonlinear singularly per-turbed systems of integral differential equations arising from neuronal networks.It has been proved that expo-nentia...We establish the exponential stability of fast traveling pulse solutions to nonlinear singularly per-turbed systems of integral differential equations arising from neuronal networks.It has been proved that expo-nential stability of these orbits is equivalent to linear stability.Let (?) be the linear differential operator obtainedby linearizing the nonlinear system about its fast pulse,and let σ((?)) be the spectrum of (?).The linearizedstability criterion says that if max{Reλ:λ∈σ((?)),λ≠0}(?)-D,for some positive constant D,and λ=0 is asimple eigenvalue of (?)(ε),then the stability follows immediately (see [13] and [37]).Therefore,to establish theexponential stability of the fast pulse,it suffices to investigate the spectrum of the operator (?).It is relativelyeasy to find the continuous spectrum,but it is very difficult to find the isolated spectrum.The real part ofthe continuous spectrum has a uniformly negative upper bound,hence it causes no threat to the stability.Itremains to see if the isolated spectrum is safe.Eigenvalue functions (see [14] and [35,36]) have been a powerful tool to study the isolated spectrum of the as-sociated linear differential operators because the zeros of the eigenvalue functions coincide with the eigenvaluesof the operators.There have been some known methods to define eigenvalue functions for nonlinear systems ofreaction diffusion equations and for nonlinear dispersive wave equations.But for integral differential equations,we have to use different ideas to construct eigenvalue functions.We will use the method of variation of param-eters to construct the eigenvalue functions in the complex plane C.By analyzing the eigenvalue functions,wefind that there are no nonzero eigenvalues of (?) in {λ∈C:Reλ(?)-D} for the fast traveling pulse.Moreoverλ=0 is simple.This implies that the exponential stability of the fast orbits is true.展开更多
基金Supported by the National Natural Science Foundation of China(11561055)the Natural Science Foundation of Ningxia(2018AAC03057)。
文摘This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by using Residue Theorem,the general form of the contour integral representation for the homogeneous complex differential equation is obtained,which can be degenerated to classical results in real line.As for inhomogeneous complex differential equations with constant coefficients,we construct the integral expression of the particular solution for any continuous forcing term,and give rigorous proof via Residue Theorem.Thus the general solutions of inhomogeneous complex differential equations are also given.The main purpose of this paper is to give a foundation for a complete theory of linear complex differential equations with constant coefficients by a contour integral method.The results can not only solve the inhomogeneous complex differential equation well,but also explain the forms that are difficult to be understood in the classical solutions.
文摘In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.
文摘With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.
基金This project is partly supported by the Reidler Foundation
文摘We establish the exponential stability of fast traveling pulse solutions to nonlinear singularly per-turbed systems of integral differential equations arising from neuronal networks.It has been proved that expo-nential stability of these orbits is equivalent to linear stability.Let (?) be the linear differential operator obtainedby linearizing the nonlinear system about its fast pulse,and let σ((?)) be the spectrum of (?).The linearizedstability criterion says that if max{Reλ:λ∈σ((?)),λ≠0}(?)-D,for some positive constant D,and λ=0 is asimple eigenvalue of (?)(ε),then the stability follows immediately (see [13] and [37]).Therefore,to establish theexponential stability of the fast pulse,it suffices to investigate the spectrum of the operator (?).It is relativelyeasy to find the continuous spectrum,but it is very difficult to find the isolated spectrum.The real part ofthe continuous spectrum has a uniformly negative upper bound,hence it causes no threat to the stability.Itremains to see if the isolated spectrum is safe.Eigenvalue functions (see [14] and [35,36]) have been a powerful tool to study the isolated spectrum of the as-sociated linear differential operators because the zeros of the eigenvalue functions coincide with the eigenvaluesof the operators.There have been some known methods to define eigenvalue functions for nonlinear systems ofreaction diffusion equations and for nonlinear dispersive wave equations.But for integral differential equations,we have to use different ideas to construct eigenvalue functions.We will use the method of variation of param-eters to construct the eigenvalue functions in the complex plane C.By analyzing the eigenvalue functions,wefind that there are no nonzero eigenvalues of (?) in {λ∈C:Reλ(?)-D} for the fast traveling pulse.Moreoverλ=0 is simple.This implies that the exponential stability of the fast orbits is true.