In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar ...In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.展开更多
In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order...In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.展开更多
In this paper. we investigate the growth of solutions of the second-order linear homogeneons differential equations with entire coefficients of the same order. and obtain precise estimates of the hyper-order of their ...In this paper. we investigate the growth of solutions of the second-order linear homogeneons differential equations with entire coefficients of the same order. and obtain precise estimates of the hyper-order of their solutions.展开更多
Assume that the fundamental solution matrix U (t, s ) of x’(t)=L(t, x,) satisfies |U(t,s)|≤Ke-e(t-s) for t≥s.If|(t,φ)|≤δ|φ(0)|with δ【a/K, then the fundamental solution matrix of the perturbed equation x’(t)=...Assume that the fundamental solution matrix U (t, s ) of x’(t)=L(t, x,) satisfies |U(t,s)|≤Ke-e(t-s) for t≥s.If|(t,φ)|≤δ|φ(0)|with δ【a/K, then the fundamental solution matrix of the perturbed equation x’(t)=L(t,x,)+(t ,x,) also possesses similar exponential estimate. For α=0, a similar result is given.展开更多
In this paper, we investigate complex homogeneous and non-homogeneous higher order linear differential equations with meromorphic coefficients. We obtain several results concerning the iterated order of meromorphic so...In this paper, we investigate complex homogeneous and non-homogeneous higher order linear differential equations with meromorphic coefficients. We obtain several results concerning the iterated order of meromorphic solutions, and the iterated convergence exponent of the zeros of meromorphic solutions.展开更多
In this paper, we investigate the complex oscillation of higher order homogenous and non- homogeneous linear differential equations with meromorphic coefficients of iterated order, and obtain some results which improv...In this paper, we investigate the complex oscillation of higher order homogenous and non- homogeneous linear differential equations with meromorphic coefficients of iterated order, and obtain some results which improve and extend those given by Z. X. Chen, L. Kinnunen, etc.展开更多
This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.G...This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.Gundersen and L.Z.Yang.展开更多
We consider the higher order equation f(k) + ak-1,(z)f(k-1) +……+ al(z)f + (Q1(z)ep1(z) + Q2(z)ep2(z) + Q(z))f = 0, where pl(z) = {1zn+''' , p2(z) = '{2zn+''' are non constant polynomials,...We consider the higher order equation f(k) + ak-1,(z)f(k-1) +……+ al(z)f + (Q1(z)ep1(z) + Q2(z)ep2(z) + Q(z))f = 0, where pl(z) = {1zn+''' , p2(z) = '{2zn+''' are non constant polynomials, Q1(z)( 0), Q2(z)( 0), Q(z) and aj(z)(j = 1,''', k - 1) are entire functions and their orders are less than n. In this paper we treat the case when '{1/{1 is not real. It is shown that the exponent of convergence to the zero-sequence of any non-trivial solution of the above equation is infinite.展开更多
In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
This paper is devoted to studying the growth problem, the zeros and fixed points distribution of the solutions of linear differential equations f″+e^-zf′+Q(z)f=F(z),whereQ(z)≡h(z)e^cz and c∈R.
In this paper, we mainly investigate entire solutions of complex differential equations with coefficients involving exponential functions, and obtain the dynamical properties of the solutions, their derivatives and pr...In this paper, we mainly investigate entire solutions of complex differential equations with coefficients involving exponential functions, and obtain the dynamical properties of the solutions, their derivatives and primitives. With some conditions on coefficients, for the solutions, their derivatives and their primitives, we consider the common limiting directions of Julia set and the existence of Baker wandering domain.展开更多
In this paper,we mainly investigate the dynamical properties of entire solutions of complex differential equations.With some conditions on coefficients,we prove that the set of common limiting directions of Julia sets...In this paper,we mainly investigate the dynamical properties of entire solutions of complex differential equations.With some conditions on coefficients,we prove that the set of common limiting directions of Julia sets of solutions,their derivatives and their primitives must have a definite range of measure.展开更多
In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li C...In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li Chun-hong.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
In this paper,the precise estimation of the order and hyper-order of solutions of a class of three order homogeneous and non-homogeneous linear differential equations are obtained.The results of M.Ozawa(1980),G.Gunder...In this paper,the precise estimation of the order and hyper-order of solutions of a class of three order homogeneous and non-homogeneous linear differential equations are obtained.The results of M.Ozawa(1980),G.Gundersen(1988) and J.K.Langley(1986) are improved.展开更多
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ...Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.展开更多
Over the last few years, there has been a significant increase in attention paid to fractional differential equations, given their wide array of applications in the fields of physics and engineering. The recent develo...Over the last few years, there has been a significant increase in attention paid to fractional differential equations, given their wide array of applications in the fields of physics and engineering. The recent development of using fractional telegraph equations as models in some fields (e.g., the thermal diffusion in fractal media) has heightened the importance of examining the method of solutions for such equations (both approximate and analytic). The present work is designed to serve as a valuable contribution to work in this field. The key objective of this work is to propose a general framework that can be used to guide quadratic spline functions in order to create a numerical method for obtaining an approximation solution using the linear space-fractional telegraph equation. Additionally, the Von Neumann method was employed to measure the stability of the analytical scheme, which showed that the proposed method is conditionally stable. What’s more, the proposal contains a numerical example that illustrates how the proposed method can be implemented practically, whilst the error estimates and numerical stability results are discussed in depth. The findings indicate that the proposed model is highly effective, convenient and accurate for solving the relevant problems and is suitable for use with approximate solutions acquired through the two-dimensional differential transform method that has been developed for linear partial differential equations with space- and time-fractional derivatives.展开更多
Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are ...Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are full and can become very ill- conditioned. Similarly, the Hilbert and Vandermonde have full matrices and become ill-conditioned. The difference between a coefficient matrix generated by C<sup>∞</sup>-RBFs for partial differential or integral equations and Hilbert and Vandermonde systems is that C<sup>∞</sup>-RBFs are very sensitive to small changes in the adjustable parameters. These parameters affect the condition number and solution accuracy. The error terrain has many local and global maxima and minima. To find stable and accurate numerical solutions for full linear equation systems, this study proposes a hybrid combination of block Gaussian elimination (BGE) combined with arbitrary precision arithmetic (APA) to minimize the accumulation of rounding errors. In the future, this algorithm can execute faster using preconditioners and implemented on massively parallel computers.展开更多
基金the National Natural Science Foundation of China(10161006,10571044)the Natural Science Foundation of Guangdong Prov(06025059)
文摘In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.
文摘In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.
基金This work is supported by the National Natural Science Foundation of China
文摘In this paper. we investigate the growth of solutions of the second-order linear homogeneons differential equations with entire coefficients of the same order. and obtain precise estimates of the hyper-order of their solutions.
基金Research supported by China National Science Foundation
文摘Assume that the fundamental solution matrix U (t, s ) of x’(t)=L(t, x,) satisfies |U(t,s)|≤Ke-e(t-s) for t≥s.If|(t,φ)|≤δ|φ(0)|with δ【a/K, then the fundamental solution matrix of the perturbed equation x’(t)=L(t,x,)+(t ,x,) also possesses similar exponential estimate. For α=0, a similar result is given.
基金This work is supported by the National Natural Science Foundation of China (No.10161006)the Natural Science Foundation of Jiangxi Province (No.0311043).
文摘In this paper, we investigate complex homogeneous and non-homogeneous higher order linear differential equations with meromorphic coefficients. We obtain several results concerning the iterated order of meromorphic solutions, and the iterated convergence exponent of the zeros of meromorphic solutions.
基金This research is supported by the Research Foundation of Doctor Points of China (No. 20060422049) and the National Natural Science Foundation of China (No. 10371065).
文摘In this paper, we investigate the complex oscillation of higher order homogenous and non- homogeneous linear differential equations with meromorphic coefficients of iterated order, and obtain some results which improve and extend those given by Z. X. Chen, L. Kinnunen, etc.
文摘This paper investigates solutions of some non-homogeneous linear differential equations, which have non-homogeneous term as the small function of solution. Using the similar method, we can generalize the result of G.Gundersen and L.Z.Yang.
基金the NNSF of China (No.19871050) and the RFDP (No.98042209).
文摘We consider the higher order equation f(k) + ak-1,(z)f(k-1) +……+ al(z)f + (Q1(z)ep1(z) + Q2(z)ep2(z) + Q(z))f = 0, where pl(z) = {1zn+''' , p2(z) = '{2zn+''' are non constant polynomials, Q1(z)( 0), Q2(z)( 0), Q(z) and aj(z)(j = 1,''', k - 1) are entire functions and their orders are less than n. In this paper we treat the case when '{1/{1 is not real. It is shown that the exponent of convergence to the zero-sequence of any non-trivial solution of the above equation is infinite.
文摘In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
基金Tian Yuan Fund for Mathematics (Grant No.10426007)Shanghai Postdoctoral Scientific Program
文摘This paper is devoted to studying the growth problem, the zeros and fixed points distribution of the solutions of linear differential equations f″+e^-zf′+Q(z)f=F(z),whereQ(z)≡h(z)e^cz and c∈R.
基金supported by Shanghai Center for Mathematical Science China Scholarship Council(201206105015)the National Science Foundation of China(11171119,11001057,11571049)the Natural Science Foundation of Guangdong Province in China(2014A030313422)
文摘In this paper, we mainly investigate entire solutions of complex differential equations with coefficients involving exponential functions, and obtain the dynamical properties of the solutions, their derivatives and primitives. With some conditions on coefficients, for the solutions, their derivatives and their primitives, we consider the common limiting directions of Julia set and the existence of Baker wandering domain.
基金supported by Shanghai Center for Mathematical Sci-ences,China Scholarship Council(201206105015)National Science Foundation of China(11171119,11001057,11571049)Natural Science Foundation of Guangdong Province in China(2014A030313422)
文摘In this paper,we mainly investigate the dynamical properties of entire solutions of complex differential equations.With some conditions on coefficients,we prove that the set of common limiting directions of Julia sets of solutions,their derivatives and their primitives must have a definite range of measure.
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
基金This work is supported by the National Natural Science Foundation of China(10161006)the Natural Science Foundation of Jiangxi Prov(001109)Korea Research Foundation Grant(KRF-2001-015-DP0015)
文摘In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li Chun-hong.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.
文摘In this paper,the precise estimation of the order and hyper-order of solutions of a class of three order homogeneous and non-homogeneous linear differential equations are obtained.The results of M.Ozawa(1980),G.Gundersen(1988) and J.K.Langley(1986) are improved.
文摘Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.
文摘Over the last few years, there has been a significant increase in attention paid to fractional differential equations, given their wide array of applications in the fields of physics and engineering. The recent development of using fractional telegraph equations as models in some fields (e.g., the thermal diffusion in fractal media) has heightened the importance of examining the method of solutions for such equations (both approximate and analytic). The present work is designed to serve as a valuable contribution to work in this field. The key objective of this work is to propose a general framework that can be used to guide quadratic spline functions in order to create a numerical method for obtaining an approximation solution using the linear space-fractional telegraph equation. Additionally, the Von Neumann method was employed to measure the stability of the analytical scheme, which showed that the proposed method is conditionally stable. What’s more, the proposal contains a numerical example that illustrates how the proposed method can be implemented practically, whilst the error estimates and numerical stability results are discussed in depth. The findings indicate that the proposed model is highly effective, convenient and accurate for solving the relevant problems and is suitable for use with approximate solutions acquired through the two-dimensional differential transform method that has been developed for linear partial differential equations with space- and time-fractional derivatives.
文摘Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are full and can become very ill- conditioned. Similarly, the Hilbert and Vandermonde have full matrices and become ill-conditioned. The difference between a coefficient matrix generated by C<sup>∞</sup>-RBFs for partial differential or integral equations and Hilbert and Vandermonde systems is that C<sup>∞</sup>-RBFs are very sensitive to small changes in the adjustable parameters. These parameters affect the condition number and solution accuracy. The error terrain has many local and global maxima and minima. To find stable and accurate numerical solutions for full linear equation systems, this study proposes a hybrid combination of block Gaussian elimination (BGE) combined with arbitrary precision arithmetic (APA) to minimize the accumulation of rounding errors. In the future, this algorithm can execute faster using preconditioners and implemented on massively parallel computers.