This paper presents a new dimension reduction strategy for medium and large-scale linear programming problems. The proposed method uses a subset of the original constraints and combines two algorithms: the weighted av...This paper presents a new dimension reduction strategy for medium and large-scale linear programming problems. The proposed method uses a subset of the original constraints and combines two algorithms: the weighted average and the cosine simplex algorithm. The first approach identifies binding constraints by using the weighted average of each constraint, whereas the second algorithm is based on the cosine similarity between the vector of the objective function and the constraints. These two approaches are complementary, and when used together, they locate the essential subset of initial constraints required for solving medium and large-scale linear programming problems. After reducing the dimension of the linear programming problem using the subset of the essential constraints, the solution method can be chosen from any suitable method for linear programming. The proposed approach was applied to a set of well-known benchmarks as well as more than 2000 random medium and large-scale linear programming problems. The results are promising, indicating that the new approach contributes to the reduction of both the size of the problems and the total number of iterations required. A tree-based classification model also confirmed the need for combining the two approaches. A detailed numerical example, the general numerical results, and the statistical analysis for the decision tree procedure are presented.展开更多
In this paper we investigate the effects of the large extra dimensions on the two processes e+ e-→+ H^0 Z^0 Z^0 and e^+e^-→ H^0H^0 Z^0 at linear colliders in both unpolarized and polarized collision modes. We fin...In this paper we investigate the effects of the large extra dimensions on the two processes e+ e-→+ H^0 Z^0 Z^0 and e^+e^-→ H^0H^0 Z^0 at linear colliders in both unpolarized and polarized collision modes. We find that the virtual Kaluza-Klein graviton exchange can significantly enhance the cross section from their standard model expectations for these two processes. The results show that the LED effect on the process e+ e-→+ H^0 Z^0 Z^0 allows the observation limits on the effective scale Ms to be probed up to 9. 75 TeV and 10.1 TeV in the unpolarized and +-(λe+ =1/2, λe-= -1/2) polarized beam collision modes (with Pe+ = 0.6, Pe-=0.8), respectively. For the process e+ e-→+ H^0 H^0 Z^0, these limits on Ms can be probed up to 6.06 TeV and 6.38 TeV in the unpolarized and polarized collision modes separately. We find that the λe+ = 1/2, λe-= -1/2 polarization collision mode in both processe+ e-→+ H^0 Z^0 Z^0 and e+ e-→+ H^0 H^0 Z^0 may provide a possibility to improve the sensitivity in probing the LED effects.展开更多
Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian ...Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.展开更多
The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicat...The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.展开更多
A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl...A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.展开更多
Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern o...Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern of multi-segment movement and reveal the control mechanism. The degree of freedom and dimensional properties provide a view of the coordinative structure during walking, which has been extensively studied by using dimension reduction technique. In this paper, the studies related to the coordinative structure, dimensions detection and pattern reorganization during walking have been reviewed. Principal component analysis, as a popular technique, is widely used in the processing of human movement data. Both the principle and the outcomes of principal component analysis were introduced in this paper. This technique has been reported to successfully reduce the redundancy within the original data, identify the physical meaning represented by the extracted principal components and discriminate the different patterns. The coordinative structure during walking assessed by this technique could provide further information of the body control mechanism and correlate walking pattern with injury.展开更多
In this paper, a lower bound of maximal dimensions of commutable matrix spaces (CMS) is given. It is found that the linear dependence of a group of one to one commutable matrices is related to whether some equations i...In this paper, a lower bound of maximal dimensions of commutable matrix spaces (CMS) is given. It is found that the linear dependence of a group of one to one commutable matrices is related to whether some equations in system can be eliminated. The corresponding relation is given. By introducing conceptions of eliminating set and eliminating index, we give an estimation of upper bound of maximal dimensions of CMS. For special cases n=5,6, the further estimation of maximal dimensions of CMS is presented.展开更多
The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence...The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence of pullback D-absorbing sets with cocycle and obtaining the pullback :D-asymptotic compactness. Furthermore, the estimation of the fractal dimensions for the 2D g-Navier-Stokes equations is given.展开更多
In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived...In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic distribution of the proposed test statistic under the null hypothesis is obtained.展开更多
<strong>Purpose:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> This study sought to review the characteristics, strengths, weak...<strong>Purpose:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> This study sought to review the characteristics, strengths, weaknesses variants, applications areas and data types applied on the various </span><span><span style="font-family:Verdana;">Dimension Reduction techniques. </span><b><span style="font-family:Verdana;">Methodology: </span></b><span style="font-family:Verdana;">The most commonly used databases employed to search for the papers were ScienceDirect, Scopus, Google Scholar, IEEE Xplore and Mendeley. An integrative review was used for the study where </span></span></span><span style="font-family:Verdana;">341</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> papers were reviewed. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> The linear techniques considered were Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Singular Value Decomposition (SVD), Latent Semantic Analysis (LSA), Locality Preserving Projections (LPP), Independent Component Analysis (ICA) and Project Pursuit (PP). The non-linear techniques which were developed to work with applications that ha</span></span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> complex non-linear structures considered were Kernel Principal Component Analysis (KPC</span><span style="font-family:Verdana;">A), Multi</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">dimensional Scaling (MDS), Isomap, Locally Linear Embedding (LLE), Self-Organizing Map (SOM), Latent Vector Quantization (LVQ), t-Stochastic </span><span style="font-family:Verdana;">neighbor embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP). DR techniques can further be categorized into supervised, unsupervised and more recently semi-supervised learning methods. The supervised versions are the LDA and LVQ. All the other techniques are unsupervised. Supervised variants of PCA, LPP, KPCA and MDS have </span><span style="font-family:Verdana;">been developed. Supervised and semi-supervised variants of PP and t-SNE have also been developed and a semi supervised version of the LDA has been developed. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The various application areas, strengths, weaknesses and variants of the DR techniques were explored. The different data types that have been applied on the various DR techniques were also explored.</span></span>展开更多
The mononuclear complex [Ag(C6H6NCl)2](ClO() has been prepared and structurally analyzed by single-crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group C2/c with unit cell paramete...The mononuclear complex [Ag(C6H6NCl)2](ClO() has been prepared and structurally analyzed by single-crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group C2/c with unit cell parameters: a=15.5314(2), b=8.0247(8), c=15.3701(2)?.β=118.832(2)°, V=1678.2(3)?3, Z=4, Mr=462.46, Dc=1.830Mg/m3, F(000)=912, μ(MoKα) = 1.694cm-1. The final R and wR are 0.0472 and 0.1272 for 1484 observed reflections with I≥3σ(I). The Ag atom is coordinated by two nitrogen atoms of 4-chloromethyl-pyridine in a linear coordination geometry. Each molecule is further linked by the weak interaction between the Cl and Ag atoms to form a one-dimensional chain structure with Ag-Cl distance of 3.240?.展开更多
Mathematical compatibilities and constraints of a hypothetical 5D space-time with time referenced by two coordinates (3-2) have been revisited in detail in several recent papers. It has been prescribed from the GR the...Mathematical compatibilities and constraints of a hypothetical 5D space-time with time referenced by two coordinates (3-2) have been revisited in detail in several recent papers. It has been prescribed from the GR the compatibility constraints of the FLRW metric in each temporal brane, to be restricted to Closed Universes, Smooth Initial Singularities, and “Open CTC”. In a first view, this leads to leaving these works considering mathematical games discarded by the Standard Candles data. However, if time would be referred by two coordinates, they would not be linearly related, and it will be mathematically stated that space-time may not be flat in any case because time-like branes geometry will never be. If so, the time scale “lived” over a two-time dimension geodesic necessarily is not constant over its linear projection on one of both coordinates. Consequently, the correlations between Redshift and Distance Modulus—Distance Ladder—may be corrected by a synchronization function (if a no-linear two-time geodesic trajectory over a “warped temporal geometry” is linearly divided into constant segments, then their projections are not linear in any case). We apply an example of time-trajectory over the time slices, matching the Standard Candle data for a Closed Universe dominated by matter (>90%) in a bulk 3-2 configuration, with open temporal branes and smooth singularity. If time can be referred by two coordinates, then there is no need of Darkness to explain astrophysical data and Universe can be closed.展开更多
In this paper, we consider a system of two cubic quasi-linear Klein-Gordon equations with different masses for small, smooth, compactly supported Cauchy data in one space dimension. We show that such a system has glob...In this paper, we consider a system of two cubic quasi-linear Klein-Gordon equations with different masses for small, smooth, compactly supported Cauchy data in one space dimension. We show that such a system has global existence when the nonlinearities satisfy a convenient null condition. Our results extend the global existence proved by Sunagawa recently under the non-resonance assumption to that under the resonance assumption.展开更多
文摘This paper presents a new dimension reduction strategy for medium and large-scale linear programming problems. The proposed method uses a subset of the original constraints and combines two algorithms: the weighted average and the cosine simplex algorithm. The first approach identifies binding constraints by using the weighted average of each constraint, whereas the second algorithm is based on the cosine similarity between the vector of the objective function and the constraints. These two approaches are complementary, and when used together, they locate the essential subset of initial constraints required for solving medium and large-scale linear programming problems. After reducing the dimension of the linear programming problem using the subset of the essential constraints, the solution method can be chosen from any suitable method for linear programming. The proposed approach was applied to a set of well-known benchmarks as well as more than 2000 random medium and large-scale linear programming problems. The results are promising, indicating that the new approach contributes to the reduction of both the size of the problems and the total number of iterations required. A tree-based classification model also confirmed the need for combining the two approaches. A detailed numerical example, the general numerical results, and the statistical analysis for the decision tree procedure are presented.
基金The project supported in part by National Natural Science Foundation of China and the Special Fund of the Chinese Academy of Sciences
文摘In this paper we investigate the effects of the large extra dimensions on the two processes e+ e-→+ H^0 Z^0 Z^0 and e^+e^-→ H^0H^0 Z^0 at linear colliders in both unpolarized and polarized collision modes. We find that the virtual Kaluza-Klein graviton exchange can significantly enhance the cross section from their standard model expectations for these two processes. The results show that the LED effect on the process e+ e-→+ H^0 Z^0 Z^0 allows the observation limits on the effective scale Ms to be probed up to 9. 75 TeV and 10.1 TeV in the unpolarized and +-(λe+ =1/2, λe-= -1/2) polarized beam collision modes (with Pe+ = 0.6, Pe-=0.8), respectively. For the process e+ e-→+ H^0 H^0 Z^0, these limits on Ms can be probed up to 6.06 TeV and 6.38 TeV in the unpolarized and polarized collision modes separately. We find that the λe+ = 1/2, λe-= -1/2 polarization collision mode in both processe+ e-→+ H^0 Z^0 Z^0 and e+ e-→+ H^0 H^0 Z^0 may provide a possibility to improve the sensitivity in probing the LED effects.
基金The supports of the National Natural Science Foundation of China(Grant Nos.51725804 and U1711264)the Research Fund for State Key Laboratories of Ministry of Science and Technology of China(SLDRCE19-B-23)the Shanghai Post-Doctoral Excellence Program(2022558)。
文摘Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.
文摘The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.
基金The National Natural Science Foundation of China (No.61374194)
文摘A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.
文摘Walking is a complex task which includes hundreds of muscles, bones and joints working together to deliver smooth movements. With the complexity, walking has been widely investigated in order to identify the pattern of multi-segment movement and reveal the control mechanism. The degree of freedom and dimensional properties provide a view of the coordinative structure during walking, which has been extensively studied by using dimension reduction technique. In this paper, the studies related to the coordinative structure, dimensions detection and pattern reorganization during walking have been reviewed. Principal component analysis, as a popular technique, is widely used in the processing of human movement data. Both the principle and the outcomes of principal component analysis were introduced in this paper. This technique has been reported to successfully reduce the redundancy within the original data, identify the physical meaning represented by the extracted principal components and discriminate the different patterns. The coordinative structure during walking assessed by this technique could provide further information of the body control mechanism and correlate walking pattern with injury.
基金Supported by the Youth Mainstay Teacher Foundation of HunanProvince Educational Committee
文摘In this paper, a lower bound of maximal dimensions of commutable matrix spaces (CMS) is given. It is found that the linear dependence of a group of one to one commutable matrices is related to whether some equations in system can be eliminated. The corresponding relation is given. By introducing conceptions of eliminating set and eliminating index, we give an estimation of upper bound of maximal dimensions of CMS. For special cases n=5,6, the further estimation of maximal dimensions of CMS is presented.
基金supported by the National Natural Science Foundation of China (No.10871156)the Fund of Xi'an Jiaotong University (No.2009xjtujc30)
文摘The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence of pullback D-absorbing sets with cocycle and obtaining the pullback :D-asymptotic compactness. Furthermore, the estimation of the fractal dimensions for the 2D g-Navier-Stokes equations is given.
文摘In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic distribution of the proposed test statistic under the null hypothesis is obtained.
文摘<strong>Purpose:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> This study sought to review the characteristics, strengths, weaknesses variants, applications areas and data types applied on the various </span><span><span style="font-family:Verdana;">Dimension Reduction techniques. </span><b><span style="font-family:Verdana;">Methodology: </span></b><span style="font-family:Verdana;">The most commonly used databases employed to search for the papers were ScienceDirect, Scopus, Google Scholar, IEEE Xplore and Mendeley. An integrative review was used for the study where </span></span></span><span style="font-family:Verdana;">341</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> papers were reviewed. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> The linear techniques considered were Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Singular Value Decomposition (SVD), Latent Semantic Analysis (LSA), Locality Preserving Projections (LPP), Independent Component Analysis (ICA) and Project Pursuit (PP). The non-linear techniques which were developed to work with applications that ha</span></span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> complex non-linear structures considered were Kernel Principal Component Analysis (KPC</span><span style="font-family:Verdana;">A), Multi</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">dimensional Scaling (MDS), Isomap, Locally Linear Embedding (LLE), Self-Organizing Map (SOM), Latent Vector Quantization (LVQ), t-Stochastic </span><span style="font-family:Verdana;">neighbor embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP). DR techniques can further be categorized into supervised, unsupervised and more recently semi-supervised learning methods. The supervised versions are the LDA and LVQ. All the other techniques are unsupervised. Supervised variants of PCA, LPP, KPCA and MDS have </span><span style="font-family:Verdana;">been developed. Supervised and semi-supervised variants of PP and t-SNE have also been developed and a semi supervised version of the LDA has been developed. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The various application areas, strengths, weaknesses and variants of the DR techniques were explored. The different data types that have been applied on the various DR techniques were also explored.</span></span>
文摘The mononuclear complex [Ag(C6H6NCl)2](ClO() has been prepared and structurally analyzed by single-crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group C2/c with unit cell parameters: a=15.5314(2), b=8.0247(8), c=15.3701(2)?.β=118.832(2)°, V=1678.2(3)?3, Z=4, Mr=462.46, Dc=1.830Mg/m3, F(000)=912, μ(MoKα) = 1.694cm-1. The final R and wR are 0.0472 and 0.1272 for 1484 observed reflections with I≥3σ(I). The Ag atom is coordinated by two nitrogen atoms of 4-chloromethyl-pyridine in a linear coordination geometry. Each molecule is further linked by the weak interaction between the Cl and Ag atoms to form a one-dimensional chain structure with Ag-Cl distance of 3.240?.
文摘Mathematical compatibilities and constraints of a hypothetical 5D space-time with time referenced by two coordinates (3-2) have been revisited in detail in several recent papers. It has been prescribed from the GR the compatibility constraints of the FLRW metric in each temporal brane, to be restricted to Closed Universes, Smooth Initial Singularities, and “Open CTC”. In a first view, this leads to leaving these works considering mathematical games discarded by the Standard Candles data. However, if time would be referred by two coordinates, they would not be linearly related, and it will be mathematically stated that space-time may not be flat in any case because time-like branes geometry will never be. If so, the time scale “lived” over a two-time dimension geodesic necessarily is not constant over its linear projection on one of both coordinates. Consequently, the correlations between Redshift and Distance Modulus—Distance Ladder—may be corrected by a synchronization function (if a no-linear two-time geodesic trajectory over a “warped temporal geometry” is linearly divided into constant segments, then their projections are not linear in any case). We apply an example of time-trajectory over the time slices, matching the Standard Candle data for a Closed Universe dominated by matter (>90%) in a bulk 3-2 configuration, with open temporal branes and smooth singularity. If time can be referred by two coordinates, then there is no need of Darkness to explain astrophysical data and Universe can be closed.
文摘In this paper, we consider a system of two cubic quasi-linear Klein-Gordon equations with different masses for small, smooth, compactly supported Cauchy data in one space dimension. We show that such a system has global existence when the nonlinearities satisfy a convenient null condition. Our results extend the global existence proved by Sunagawa recently under the non-resonance assumption to that under the resonance assumption.