This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-K...This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.展开更多
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable wit...This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ performance and the controller can be obtained by solving a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapunov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.展开更多
Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with exp...Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with explicitly. Based on these results, a new recursive approach is proposed in the necessity proof of strict bounded real lemma for generalized linear system with finite discrete jumps.展开更多
As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the ...As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the saturated feedback system is GAS or RAS? The paper presents a criterion to answer this question, and describes an algorithm to calculate an invariant attractive ellipsoid for the RAS case. At last, the effectiveness of the approach is shown with examples.展开更多
In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, ...In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, without zeros, and with measurable state. The controller guarantees that the control system is Type 1 and has the desired constant gain and poles or that the control system tracks, with a specified maximum error and with a specified maximum time constant, a generic reference with bounded derivative (variation in the discrete-time case), also in the presence of a generic disturbance with bounded derivative (variation). In addition, it is considered the case in which the reference is known a priori. The utility and the efficiency of the proposed methods are illustrated with attractive and significant examples of motion control and temperature control. This book is useful for the design of control systems, especially for manufacturing systems, that are versatile, fast, precise and robust.展开更多
This paper studies the reachability problem of the switched linear discrete singular (SLDS) systems. Under the condition that all subsystems are regular, the reachability of the SLDS systems is characterized based o...This paper studies the reachability problem of the switched linear discrete singular (SLDS) systems. Under the condition that all subsystems are regular, the reachability of the SLDS systems is characterized based on a peculiar repeatedly introduced switching sequence. The necessary and sufficient conditions are obtained for the reachability of the SLDS systems.展开更多
The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear...The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.展开更多
This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz condition...This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method.展开更多
In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the Interna...In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.展开更多
In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm i...In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm is proposed. And the threshold limited technology is adopted in the proposed algorithm. Within the chosen optimal time region, residual signals are used in the proposed algorithm to correct the introduced virtual faults with iterative learning rules, making the virtual faults close to these occurred in practical systems. And the same method is repeated in the rest optimal time regions, thereby reaching the aim of fault diagnosis. The proposed algorithm not only completes fault detection and estimation for discrete linear time-varying uncertain systems, but also improves the reliability of fault detection and decreases the false alarm rate. The final simulation results verify the validity of the proposed algorithm.展开更多
A robust stabilization problem is considered for time delay nonlinear discrete-time systems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such controllers is given through Lyapuno...A robust stabilization problem is considered for time delay nonlinear discrete-time systems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such controllers is given through Lyapunov stability theorem. And it is further shown that this condition is equivalent to the solvability of a certain linear matrix inequality, which can be solved easily by using the LMI toolbox of Matlab. At last, an illustrative example of truck-trailer is presented to show the feasibility and effectiveness of the proposed method.展开更多
The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the ...The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the FDF is formulated in the framework of H ∞ filtering for a class of stochastic time-varying systems.A sufficient condition for the existence of the FDF is derived in terms of a Riccati equation.The determination of the parameter matrices of the filter is converted into a quadratic optimization problem,and an analytical solution of the parameter matrices is obtained by solving the Riccati equation.Numerical examples are given to illustrate the effectiveness of the proposed method.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is pr...This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.展开更多
The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii function...The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.展开更多
Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matric...Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.展开更多
This paper deals with the problem of the optimal fault detection (FD) for linear discrete time-varying (LDTV) systems with delayed state and l(2)-norm bounded unknown input. The novelty lies in the designing of an eva...This paper deals with the problem of the optimal fault detection (FD) for linear discrete time-varying (LDTV) systems with delayed state and l(2)-norm bounded unknown input. The novelty lies in the designing of an evaluation function for the robust FD. The basic idea is to directly construct an evaluation function by using a weighted l(2)-norm of the measurement output, which achieves an optimal trade-off between the sensitivity to fault and the robustness to l(2)-norm bounded unknown input. To avoid complex computation, a feasible solution is obtained via the recursive computation by applying the orthogonal projection. It is shown that such an evaluation function provides a unified scheme for both the cases of unknown input being l(2)-norm bounded and jointly normal distribution, while a threshold may be chosen based on a priori knowledge of unknown input. A numerical example is given to demonstrate the effectiveness of the proposed method.展开更多
文摘This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
文摘This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ performance and the controller can be obtained by solving a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapunov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.
基金This work was supported by the National Natural Science Foundation of China (No. 60274058).
文摘Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with explicitly. Based on these results, a new recursive approach is proposed in the necessity proof of strict bounded real lemma for generalized linear system with finite discrete jumps.
基金Supported by National Natural Science Foundation of P. R. China (60174040)
文摘As saturation is involved in the stabilizing feedback control of a linear discrete-time system, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization (RAS). How to test if the saturated feedback system is GAS or RAS? The paper presents a criterion to answer this question, and describes an algorithm to calculate an invariant attractive ellipsoid for the RAS case. At last, the effectiveness of the approach is shown with examples.
文摘In this book new results on controller design techniques for the tracking of generic reference inputs are presented. They allow the design of a controller for an uncertain process, either continuous or discrete-time, without zeros, and with measurable state. The controller guarantees that the control system is Type 1 and has the desired constant gain and poles or that the control system tracks, with a specified maximum error and with a specified maximum time constant, a generic reference with bounded derivative (variation in the discrete-time case), also in the presence of a generic disturbance with bounded derivative (variation). In addition, it is considered the case in which the reference is known a priori. The utility and the efficiency of the proposed methods are illustrated with attractive and significant examples of motion control and temperature control. This book is useful for the design of control systems, especially for manufacturing systems, that are versatile, fast, precise and robust.
基金This work was supported by the National Natural Science Foundation of China (No. 6022130, 60334040, 60428304).
文摘This paper studies the reachability problem of the switched linear discrete singular (SLDS) systems. Under the condition that all subsystems are regular, the reachability of the SLDS systems is characterized based on a peculiar repeatedly introduced switching sequence. The necessary and sufficient conditions are obtained for the reachability of the SLDS systems.
基金This work was partially supported by RGC Grant 7103/01P and the open project of the state key Laboratory of intelligent and Systems,Tsinghua University(No.0406).
文摘The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.
基金Supported by National Natural Science Foundation of P. R. China (69874008)
文摘This paper is concerned with the problem of robust sliding-mode filtering for a class of uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with delay-dependency is proposed for existence of such a filter. And the desired filter can be found by solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is real functional bounded and not be required to be energy bounded. A numerical example is given to illustrate the effectiveness of the proposed design method.
文摘In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.
基金Supported by the National Creative Research Group Science Foundation of China (600421002) and the New Century 151 Talent Projects of Zhejiang Province
文摘为不明确的线性分离系统的一个班的 peak-to-peak 获得最小化的一条矩阵不平等途径被学习。我们最小化 * 是导致的 L 标准上的最好的上面的界限的 -norm, 由与逃避不了的椭圆体围住可达到的集合获得了,而不是直接最小化导致的 L 标准。基于这个想法,柔韧的 peak-to-peak 获得最小化的问题和控制器合成被归结为解决一套矩阵不平等的可行性问题。一个数字例子被用来表明介绍方法的可行性和有效性。
基金supported by the National Natural Science Foundation of China(61100103)
文摘In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm is proposed. And the threshold limited technology is adopted in the proposed algorithm. Within the chosen optimal time region, residual signals are used in the proposed algorithm to correct the introduced virtual faults with iterative learning rules, making the virtual faults close to these occurred in practical systems. And the same method is repeated in the rest optimal time regions, thereby reaching the aim of fault diagnosis. The proposed algorithm not only completes fault detection and estimation for discrete linear time-varying uncertain systems, but also improves the reliability of fault detection and decreases the false alarm rate. The final simulation results verify the validity of the proposed algorithm.
基金Supported by National Natural Science Foundation of P. R. China (60274009)
文摘A robust stabilization problem is considered for time delay nonlinear discrete-time systems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such controllers is given through Lyapunov stability theorem. And it is further shown that this condition is equivalent to the solvability of a certain linear matrix inequality, which can be solved easily by using the LMI toolbox of Matlab. At last, an illustrative example of truck-trailer is presented to show the feasibility and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (61174121,61121003)the National High Technology Researchand Development Program of China (863 Program) (2008AA121302)+1 种基金the National Basic Research Program of China (973 Program)(2009CB724000)the Research Fund for the Doctoral Program of Higher Education of China
文摘The problem of fault detection for linear discrete timevarying systems with multiplicative noise is dealt with.By using an observer-based robust fault detection filter(FDF) as a residual generator,the design of the FDF is formulated in the framework of H ∞ filtering for a class of stochastic time-varying systems.A sufficient condition for the existence of the FDF is derived in terms of a Riccati equation.The determination of the parameter matrices of the filter is converted into a quadratic optimization problem,and an analytical solution of the parameter matrices is obtained by solving the Riccati equation.Numerical examples are given to illustrate the effectiveness of the proposed method.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
文摘This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.
文摘The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.
文摘Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.
基金supported by the National Natural Science Foundation of China(6133300561421063)the Research Fund for the Taishan Scholar Project of Shandong Province of China
文摘This paper deals with the problem of the optimal fault detection (FD) for linear discrete time-varying (LDTV) systems with delayed state and l(2)-norm bounded unknown input. The novelty lies in the designing of an evaluation function for the robust FD. The basic idea is to directly construct an evaluation function by using a weighted l(2)-norm of the measurement output, which achieves an optimal trade-off between the sensitivity to fault and the robustness to l(2)-norm bounded unknown input. To avoid complex computation, a feasible solution is obtained via the recursive computation by applying the orthogonal projection. It is shown that such an evaluation function provides a unified scheme for both the cases of unknown input being l(2)-norm bounded and jointly normal distribution, while a threshold may be chosen based on a priori knowledge of unknown input. A numerical example is given to demonstrate the effectiveness of the proposed method.