The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite ...The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.展开更多
In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estim...In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.展开更多
The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii function...The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.展开更多
An efficient algorithm for the representation and approximation of linear time-varying systems is presented via the fast real-valued discrete Gabor transform. Compared with the existing algorithm based on the traditio...An efficient algorithm for the representation and approximation of linear time-varying systems is presented via the fast real-valued discrete Gabor transform. Compared with the existing algorithm based on the traditional complex-valued discrete Gabor transform, the proposed algorithm runs faster, can more easily be implemented in software or hardware, and leads to a more compact representation. Simulation results are given for demonstration.展开更多
The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability condition...The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.展开更多
New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the time-domain method. The results are derived based on a new-type stability ...New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the time-domain method. The results are derived based on a new-type stability theorem for general retarded dynamical systems and new analysis techniques developed in the author's previous work. Unlike some results in the literature, all of the established results do not depend on the derivative of time-varying delays. Therefore, they are suitable for the case with very fast time-varying delays. In addition, some remarks are also given to explain the obtained results and to point out the limitations of the previous results in the literature. Keywords Stability - Delay-independent criteria - Delay-dependent criteria - Linear time-delay systems - Multiple time-varying delays This work was supported by NSFC Key-Project (No. 60334010) and Guangdong Province Natural Science Foundation of China (No. 31406).展开更多
The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method...The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method for designing the decentralized local memoryless state feedback controllers was proposed. All of the considered delays are continuous function, and satisfy some conditions.展开更多
In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this a...In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this aim, a new regulation protocol for the closed-loop multi-agent system under a directed graph is proposed. An important specification of the proposed protocol is to guarantee the leader-following output regulation for uncertain multi-agent systems with both stable and unstable agents. Since many signals can be approximated by a combination of the stationary and ramp signals, the presented results work for adequate variety of the leaders. The analysis and design conditions are presented in terms of certain matrix inequalities. The method proposed can be used for both stationary and ramp leaders. Simulation results are presented to show the effectiveness of the proposed method.展开更多
This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a sto...This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a stochastic Lyapunov-Krasovskii functional, new delay-dependent criteria in terms of linear matrix inequalities are derived for the the robust stochastic stability and the H∞ disturbance attenuation. Three numerical examples axe given. The results show that the proposed method is efficient and much less conservative than the existing results in the literature.展开更多
Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is...Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.展开更多
The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discusse...The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.展开更多
This paper deals with the H∞ control problems of Markovian jump systems with mode-dependent time delays. First, considering the mode-dependent time delays, a different delay-dependent H∞ performance condition for Ma...This paper deals with the H∞ control problems of Markovian jump systems with mode-dependent time delays. First, considering the mode-dependent time delays, a different delay-dependent H∞ performance condition for Markovian jump systems is proposed by constructing an improved Lyapunov-Krasovskii function. Based on this new H∞ disturbance attenuation criterion, a full-order dynamic output feedback controller that ensures the exponential mean-square stability and a prescribed H∞ performance level for the resulting closed-loop system is designed. Illustrative numerical examples are provided to demonstrate the effectiveness of the proposed approach.展开更多
The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subinte...The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subintervals, a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique. Besides, the decay rate has no conventional constraint and can be selected according to different practical conditions. Finally, two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.展开更多
In this paper, we present an interval model of networked control systems with time-varying sampling periods and time-varying network-induced delays and discuss the problem of stability of networked control systems usi...In this paper, we present an interval model of networked control systems with time-varying sampling periods and time-varying network-induced delays and discuss the problem of stability of networked control systems using Lyapunov stability theory. A sufficient stability condition is obtained by solving a set of linear matrix inequalities. In the end, the illustrative example demonstrates the correctness and effectiveness of the proposed approach.展开更多
In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturba...In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.展开更多
In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the...In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.展开更多
This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A no...This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.展开更多
The problem of robust H∞ control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration ne...The problem of robust H∞ control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration network induced delays and packet dropouts, an improved model of network-based control is developed. A less conservative delay-dependent stability condition for the closed NCSs is derived by employing a fuzzy Lyapunov-Krasovskii functional. Robust H∞ fuzzy controller is constructed that guarantee asymptotic stabilization of the NCSs and expressed in LMI-based conditions. A numerical example illustrates the effectiveness of the developed technique.展开更多
The control of time delay systems is still an open area for research. This paper proposes an enhanced model predictive discrete-time sliding mode control with a new sliding function for a linear system with state dela...The control of time delay systems is still an open area for research. This paper proposes an enhanced model predictive discrete-time sliding mode control with a new sliding function for a linear system with state delay. Firstly, a new sliding function including a present value and a past value of the state, called dynamic surface, is designed by means of linear matrix inequalities (LMIs). Then, using this dynamic function and the rolling optimization method in the predictive control strategy, a discrete predictive sliding mode controller is synthesized. This new strategy is proposed to eliminate the undesirable effect of the delay term in the closed loop system. Also, the designed control strategy is more robust, and has a chattering reduction property and a faster convergence of the system s state. Finally, a numerical example is given to illustrate the effectiveness of the proposed control.展开更多
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.
基金supported by National Natural Science Foundationof China (No. 60850004)
文摘In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
文摘The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.
基金Supported by the Excellent Young Teachers Program of the Ministry of Education, P. R. China (No. 2001-1739 and No. 2003-145)
文摘An efficient algorithm for the representation and approximation of linear time-varying systems is presented via the fast real-valued discrete Gabor transform. Compared with the existing algorithm based on the traditional complex-valued discrete Gabor transform, the proposed algorithm runs faster, can more easily be implemented in software or hardware, and leads to a more compact representation. Simulation results are given for demonstration.
基金the National Natural Science Foundation of China (69874008).
文摘The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.
文摘New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the time-domain method. The results are derived based on a new-type stability theorem for general retarded dynamical systems and new analysis techniques developed in the author's previous work. Unlike some results in the literature, all of the established results do not depend on the derivative of time-varying delays. Therefore, they are suitable for the case with very fast time-varying delays. In addition, some remarks are also given to explain the obtained results and to point out the limitations of the previous results in the literature. Keywords Stability - Delay-independent criteria - Delay-dependent criteria - Linear time-delay systems - Multiple time-varying delays This work was supported by NSFC Key-Project (No. 60334010) and Guangdong Province Natural Science Foundation of China (No. 31406).
文摘The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method for designing the decentralized local memoryless state feedback controllers was proposed. All of the considered delays are continuous function, and satisfy some conditions.
基金supported by the Natural Science and Engineering Research Council(NSERC)of Canada(RES0001828)
文摘In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this aim, a new regulation protocol for the closed-loop multi-agent system under a directed graph is proposed. An important specification of the proposed protocol is to guarantee the leader-following output regulation for uncertain multi-agent systems with both stable and unstable agents. Since many signals can be approximated by a combination of the stationary and ramp signals, the presented results work for adequate variety of the leaders. The analysis and design conditions are presented in terms of certain matrix inequalities. The method proposed can be used for both stationary and ramp leaders. Simulation results are presented to show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (No. 60874027)
文摘This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a stochastic Lyapunov-Krasovskii functional, new delay-dependent criteria in terms of linear matrix inequalities are derived for the the robust stochastic stability and the H∞ disturbance attenuation. Three numerical examples axe given. The results show that the proposed method is efficient and much less conservative than the existing results in the literature.
基金the National Natural Science Foundation of China (60325311).
文摘Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.
基金supported by the National Natural Science Foundation of China (60874114)the Fundamental Research Funds for the Central Universities, South China University of Technology (SCUT)(2009ZM0140)
文摘The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.
文摘This paper deals with the H∞ control problems of Markovian jump systems with mode-dependent time delays. First, considering the mode-dependent time delays, a different delay-dependent H∞ performance condition for Markovian jump systems is proposed by constructing an improved Lyapunov-Krasovskii function. Based on this new H∞ disturbance attenuation criterion, a full-order dynamic output feedback controller that ensures the exponential mean-square stability and a prescribed H∞ performance level for the resulting closed-loop system is designed. Illustrative numerical examples are provided to demonstrate the effectiveness of the proposed approach.
基金supported by the Program for New Century Excellent Talents in University, the Graduate Innovation Program of Jiangsu Province (CX06B-051Z)the Scientific Research Foundation of Graduate School of Southeast University (YBJJ0929)
文摘The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subintervals, a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique. Besides, the decay rate has no conventional constraint and can be selected according to different practical conditions. Finally, two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.
基金the National Natural Science Foundation of China (No.60674043)
文摘In this paper, we present an interval model of networked control systems with time-varying sampling periods and time-varying network-induced delays and discuss the problem of stability of networked control systems using Lyapunov stability theory. A sufficient stability condition is obtained by solving a set of linear matrix inequalities. In the end, the illustrative example demonstrates the correctness and effectiveness of the proposed approach.
基金Project supported by the Fund from the Department of Science and Technology(DST)(Grant No.SR/FTP/MS-039/2011)
文摘In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.
基金supported by National Basic Research Program of China(973 Program)(No.2012CB316400)National Natural Science Foundation of China(Nos.61171034 and 61273134)
文摘In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.
基金supported by the National Natural Science Foundation of China(6057401160972164+1 种基金60904101)the Scientific Research Fund of Liaoning Provincial Education Department(2009A544)
文摘This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.
文摘The problem of robust H∞ control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration network induced delays and packet dropouts, an improved model of network-based control is developed. A less conservative delay-dependent stability condition for the closed NCSs is derived by employing a fuzzy Lyapunov-Krasovskii functional. Robust H∞ fuzzy controller is constructed that guarantee asymptotic stabilization of the NCSs and expressed in LMI-based conditions. A numerical example illustrates the effectiveness of the developed technique.
基金supported by Ministry of the Higher Education and Scientific Research in Tunisa
文摘The control of time delay systems is still an open area for research. This paper proposes an enhanced model predictive discrete-time sliding mode control with a new sliding function for a linear system with state delay. Firstly, a new sliding function including a present value and a past value of the state, called dynamic surface, is designed by means of linear matrix inequalities (LMIs). Then, using this dynamic function and the rolling optimization method in the predictive control strategy, a discrete predictive sliding mode controller is synthesized. This new strategy is proposed to eliminate the undesirable effect of the delay term in the closed loop system. Also, the designed control strategy is more robust, and has a chattering reduction property and a faster convergence of the system s state. Finally, a numerical example is given to illustrate the effectiveness of the proposed control.