期刊文献+
共找到280篇文章
< 1 2 14 >
每页显示 20 50 100
基于FastICA-LDA的光伏并网逆变器故障诊断
1
作者 张磊 余茂全 夏远洋 《新余学院学报》 2024年第5期40-48,共9页
为了实现逆变器开路故障诊断,提出了一种新的诊断方法。该方法采用快速独立成分分析算法判定逆变器是否发生单管开路故障,如果发生单管开路故障,计算旋转电流Id频域下的特征值,将这些特征值作为线性判别分析模型的输入值,最后由LDA模型... 为了实现逆变器开路故障诊断,提出了一种新的诊断方法。该方法采用快速独立成分分析算法判定逆变器是否发生单管开路故障,如果发生单管开路故障,计算旋转电流Id频域下的特征值,将这些特征值作为线性判别分析模型的输入值,最后由LDA模型输出逆变器工作状态编号,从而实现单管开路定位。经过MATLAB仿真验证表明,所提方法对光伏并网逆变器故障的诊断效果较好。 展开更多
关键词 并网逆变器 开路故障 频域特征 快速独立成分分析 线性判别分析
下载PDF
基于LDA-MURE模型的背景音乐自适应推荐方法
2
作者 杨静 《信息技术》 2024年第6期136-140,146,共6页
用户的情绪状态不同,需要的背景音乐也不同,因此提出基于LDA-MURE模型的背景音乐自适应推荐方法。提取背景音乐的音频特征和社会化标签,通过Fisher线性判别分析方法融合上述数据的特征,结合投影变换方法获得不同类别背景音乐的类内离散... 用户的情绪状态不同,需要的背景音乐也不同,因此提出基于LDA-MURE模型的背景音乐自适应推荐方法。提取背景音乐的音频特征和社会化标签,通过Fisher线性判别分析方法融合上述数据的特征,结合投影变换方法获得不同类别背景音乐的类内离散度和类间离散度。通过现代心理学分析人类情绪的节律周期变化,在此基础上判断用户当前的情绪状态。最后在LDA模型的基础上构建LDA-MURE模型,为用户推荐不同类别的背景音乐。实验结果表明,所提方法的MEA指标值较低、P@N指标值较高、用户满意度较高。 展开更多
关键词 lda-MURE模型 Fisher线性判别分析方法 特征提取 背景音乐推荐 情绪状态
下载PDF
基于标幺化三阈值事件检测与LDA分类器的工商业负荷辨识方法
3
作者 陈霄 马云龙 +3 位作者 李新家 方磊 严永辉 喻伟 《电力需求侧管理》 2024年第3期112-118,共7页
非侵入式负荷辨识技术能够低成本的获取用户各类设备使用情况,实现电力负荷的在线监测与分析,对支撑负荷预测、需求响应等应用开展有着重要意义。针对一般工商业用户类型多样、负荷种类繁多、设备运行特性复杂的特点,提出了一种基于标... 非侵入式负荷辨识技术能够低成本的获取用户各类设备使用情况,实现电力负荷的在线监测与分析,对支撑负荷预测、需求响应等应用开展有着重要意义。针对一般工商业用户类型多样、负荷种类繁多、设备运行特性复杂的特点,提出了一种基于标幺化三阈值事件检测与LDA分类器的工商业负荷辨识方案。首先针对不同能耗级别、不同启停特性的设备设计了参数可调的统一负荷事件检测框架,提升了缓变型、分段型、震荡型负荷事件的检出准确度。随后提出了基于多元特征与LDA线性判别的设备类型判断算法,在兼顾边缘端计算效率的同时取得了与随机森林等非线性分类器相同的辨识性能。 展开更多
关键词 非侵入式负荷辨识 一般工商业用户 事件检测 改进三阈值算法 lda线性判别
下载PDF
基于PCA-LDA-SVM算法的茶小绿叶蝉识别 被引量:2
4
作者 吴鹏 刘金兰 《中国农机化学报》 北大核心 2024年第1期295-300,共6页
为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而... 为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而减少后续的计算时间;再利用线性判别分析(LDA)寻找特征数据的最优投影空间,使类内散布距离最小,类间散布距离最大,进一步提高识别的准确率和精确度;最后,利用支持向量机(SVM)分类器进行分类识别。试验结果表明,PCA-LDA-SVM模型识别准确率达96%,精确度达100%,召回率达92%,整体识别性能优于SVM,BP,KNN,PCA-SVM模型,具备一定的理论价值和参考意义。 展开更多
关键词 茶小绿叶蝉 病虫害识别 主成分分析(PCA) 线性判别分析(lda) 支持向量机(SVM)
下载PDF
基于LDA-IBES-RELM的光伏阵列故障诊断方法
5
作者 邹凯 曾宪文 +1 位作者 王洋 高桂革(指导) 《上海电机学院学报》 2024年第1期1-6,19,共7页
针对光伏阵列故障诊断准确率偏低的问题,提出了一种基于改进秃鹰搜索算法(IBES)优化正则化极限学习机(RELM)的故障诊断方法。首先在Simulink建立光伏阵列仿真模型,模拟典型故障并提取故障特征数据,同时利用线性判别分析(LDA)对特征量降... 针对光伏阵列故障诊断准确率偏低的问题,提出了一种基于改进秃鹰搜索算法(IBES)优化正则化极限学习机(RELM)的故障诊断方法。首先在Simulink建立光伏阵列仿真模型,模拟典型故障并提取故障特征数据,同时利用线性判别分析(LDA)对特征量降维作为故障诊断模型的输入;其次利用Logistic混沌映射、Levy飞行策略和柯西高斯变异扰动策略对秃鹰算法进行改进;最后将IBES用于对RELM的隐层参数寻优。实验结果表明:LDA-IBES-RELM模型与BES-RELM、IBES-RELM模型对比,得到的故障诊断准确率为97.71%,优于其他两种模型,验证了LDA-IBESRELM模型用于光伏阵列故障诊断的有效性和实用性。 展开更多
关键词 正则化极限学习机 光伏阵列 故障诊断 改进秃鹰搜索算法 线性判别分析
下载PDF
Unsupervised Linear Discriminant Analysis
6
作者 唐宏 方涛 +1 位作者 施鹏飞 唐国安 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期40-42,共3页
An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-neares... An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective. 展开更多
关键词 linear discriminant analysis(lda) unsupervised learning neighbor graph
下载PDF
基于ICEEMDAN和IMWPE-LDA-BOA-SVM的齿轮箱损伤识别模型 被引量:2
7
作者 王洪 张锐丽 吴凯 《机电工程》 CAS 北大核心 2023年第11期1709-1717,共9页
针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支... 针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支持向量机(SVM)的齿轮箱故障诊断方法(ICEEMDAN-IMWPE-LDA-BOA-SVM)。首先,采用ICEEMDAN对齿轮箱振动信号进行了分解,生成了一系列从低频到高频分布的本征模态函数分量;接着,基于相关系数筛选出包含主要故障信息的本征模态函数分量,进行了信号重构,降低了信号的噪声;随后,提出了改进多尺度加权排列熵的非线性动力学指标,并利用其提取了重构信号的故障特征,以构建反映齿轮箱故障特性的故障特征;然后,利用线性判别分析(LDA)对原始故障特征进行了压缩,以构建低维的故障特征向量;最后,采用蝴蝶优化算法(BOA)对支持向量机(SVM)的惩罚系数和核函数参数进行了优化,以构建参数最优的故障分类器,对齿轮箱的故障进行了识别;基于齿轮箱复合故障数据集对ICEEMDAN-IMWPE-BOA-SVM方法进行了实验和对比分析。研究结果表明:该方法能够较为准确地识别齿轮箱的不同故障类型,准确率达到了99.33%,诊断时间只需5.31 s,在多个方面都优于其他对比方法,在齿轮箱的故障诊断中更具有应用潜力。 展开更多
关键词 故障特征提取 信号分解及信号重构 特征降维 改进自适应噪声完备集成经验模态分解 改进多尺度加权排列熵 线性判别分析 蝴蝶优化算法 支持向量机
下载PDF
基于改进DFA和LDA的永磁同步电机机械故障检测 被引量:7
8
作者 赵嗣芳 宋强 +1 位作者 张艳明 张伟 《北京理工大学学报》 EI CAS CSCD 北大核心 2023年第1期61-69,共9页
为提高故障检测的精度,研究了变转速工况下永磁同步电机的机械故障检测方法.首先,分析了电机轴承、转子偏心及其复合故障的振动特性;其次,采用Vold-Kalman算法对故障特征分量进行跟踪提取,并通过信号重构消除转速变化对故障特征分量的影... 为提高故障检测的精度,研究了变转速工况下永磁同步电机的机械故障检测方法.首先,分析了电机轴承、转子偏心及其复合故障的振动特性;其次,采用Vold-Kalman算法对故障特征分量进行跟踪提取,并通过信号重构消除转速变化对故障特征分量的影响;提出一种基于改进去趋势波动分析和线性判别式分析的机械故障检测方法,实现对重构信号的故障特征提取和故障检测;最后,对所提出故障检测方法的有效性进行实验验证.实验结果表明文中所提出方法的故障检测精度为88%. 展开更多
关键词 永磁同步电机 机械故障 故障检测 去趋势波动分析 线性判别式分析
下载PDF
突发事件网络舆情反转的PCA-LDA-LSSVM预测模型 被引量:2
9
作者 赵琳琳 温国锋 杨永清 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第8期186-190,共5页
为有效引导与控制突发事件网络舆情,建立科学的预警机制,提出突发事件网络舆情反转的主成分分析(PCA)-线性判别分析(LDA)-最小二乘支持向量机(LSSVM)预测模型。利用PCA提取具有相关性的影响因素主成分,利用LDA方法分析相互独立的影响因... 为有效引导与控制突发事件网络舆情,建立科学的预警机制,提出突发事件网络舆情反转的主成分分析(PCA)-线性判别分析(LDA)-最小二乘支持向量机(LSSVM)预测模型。利用PCA提取具有相关性的影响因素主成分,利用LDA方法分析相互独立的影响因素和主成分对突发事件网络舆情反转的影响,并将LDA分析后的影响因素作为LSSVM的输入向量,预测突发事件网络舆情反转,通过选取33组突发事件网络舆情数据进行试验研究。研究结果表明:影响因素重要性由大到小依次为网民情感正倾向、网民情感负倾向、舆情事件性质、舆情传播形式、舆情首发主体权威性;当网民情感正倾向明显减少、网民情感负倾向明显增加时,应采取措施引导舆情发展。 展开更多
关键词 突发事件 网络舆情 主成分分析(PCA) 线性判别分析(lda) 最小二乘支持向量机(LSSVM)
下载PDF
基于表面肌电信号的LDA-BPNN双臂手势识别算法 被引量:1
10
作者 王金玮 曹乐 +2 位作者 阚秀 张文艳 孟壮壮 《传感器与微系统》 CSCD 北大核心 2023年第6期158-160,168,共4页
针对基于表面肌电(sEMG)信号的双臂手势识别率不高的问题,提出一种利用线性判别分析(LDA)方法结合反向传播神经网络(BPNN)算法的手势识别方法。首先,对采集的双臂sEMG信号进行小波阈值去噪的预处理,提取信号中的均方根值、绝对值均值、... 针对基于表面肌电(sEMG)信号的双臂手势识别率不高的问题,提出一种利用线性判别分析(LDA)方法结合反向传播神经网络(BPNN)算法的手势识别方法。首先,对采集的双臂sEMG信号进行小波阈值去噪的预处理,提取信号中的均方根值、绝对值均值、过零点次数、立方均值、波长、平均绝对值斜率共6种特征;再通过LDA对高维特征集进行降维处理;最后,利用BPNN建立相应的手势模型并识别。实验结果表明:在双臂手势动作的背景下,该识别算法效率较高,识别准确率高达92.7%,能够有效实现双臂手势识别。 展开更多
关键词 表面肌电信号 小波阈值去噪 线性判别分析方法 反向传播神经网络 手势识别
下载PDF
基于LDA降维方法的腹泻性贝类毒素检测研究 被引量:2
11
作者 熊建芳 刘瑶 +3 位作者 乔付 刘忠艳 姜微 卢利琼 《传感器与微系统》 CSCD 北大核心 2023年第5期25-28,共4页
提出应用近红外(NIR)技术结合线性判别分析(LDA)方法和机器学习算法,对被腹泻性毒素污染贝类进行快速无损检测的新方法。首先,采集贻贝样本NIR光谱;然后,采用LDA对NIR光谱数据降维;最后,分别应用K近邻(KNN)、随机森林(RF)、极端梯度提... 提出应用近红外(NIR)技术结合线性判别分析(LDA)方法和机器学习算法,对被腹泻性毒素污染贝类进行快速无损检测的新方法。首先,采集贻贝样本NIR光谱;然后,采用LDA对NIR光谱数据降维;最后,分别应用K近邻(KNN)、随机森林(RF)、极端梯度提升和逻辑回归(LR)4种算法实现腹泻性毒素污染贻贝分类检测。被腹泻性毒素污染的贻贝和健康贻贝的混合近红外光谱数据集经LDA降维后,使用4种分类器进行检测,准确率均达到100.00%。 展开更多
关键词 腹泻性贝类毒素 贻贝 近红外光谱 线性判别分析
下载PDF
Discriminant Analysis for Human Arm Motion Prediction and Classifying
12
作者 Mohammed Z. Al-Faiz Sarmad H. Ahmed 《Intelligent Control and Automation》 2013年第1期26-31,共6页
The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper presents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the clas... The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper presents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the classification of upper arm motions;where this algorithm was mainly used in face recognition and voice recognition. Also a comparison between the Linear Discriminant Analysis (LDA) and k-Nearest Neighbor (k-NN) algorithm is made for the classification of upper arm motions. The obtained results demonstrate superior performance of LDA to k-NN. The classification results give very accurate classification with very small classification errors. This paper is organized as follows: Muscle Anatomy, Data Classification Methods, Theory of Linear Discriminant Analysis, k-Nearest Neighbor (kNN) Algorithm, Modeling of EMG Pattern Recognition, EMG Data Generator, Electromyography Feature Extraction, Implemented System Results and Discussions, and finally, Conclusions. The proposed structure is simulated using MATLAB. 展开更多
关键词 linear discriminant Analysis (lda) k-Nearest NEIGHBOR (k-NN)
下载PDF
基于LDA降维和BP神经网络的手写数字识别
13
作者 刘佳悦 《信息与电脑》 2023年第14期187-189,193,共4页
手写数字数据集是机器学习分类领域的优质数据集,文章以反向传播(Back Propagation,BP)神经网络为基础,对手写数字进行分类识别。为减少BP神经网络的计算开支,实验前,对比了过滤卡方检验法、主成分分析(Principal Component Analysis,P... 手写数字数据集是机器学习分类领域的优质数据集,文章以反向传播(Back Propagation,BP)神经网络为基础,对手写数字进行分类识别。为减少BP神经网络的计算开支,实验前,对比了过滤卡方检验法、主成分分析(Principal Component Analysis,PCA)降维、线性判别式分析(Linear Discriminant Analysis,LDA)降维以及多维尺度变换(Multidimensional Scaling,MDS)降维对特征选取的训练测试效果,从而确定了神经网络拟合之前的最优特征提取方法。实验中,利用Bagging对BP神经网络进行集成处理,分类识别了手写数字。实验后,将文中方法与朴素贝叶斯、决策树、随机森林、LDA多分类进行对比。结果表明,采取LDA降维方法时,降到9维的特征提取方式最优,单个BP神经网络对手写数字数据识别的准确率为92%左右,而基于Bagging集成的BP神经网络在识别准确率方面高达95%。 展开更多
关键词 线性判别式分析(lda) 反向传播(BP) 数据识别 手写数字
下载PDF
基于近红外光谱技术的六大茶类快速识别 被引量:4
14
作者 张灵枝 黄艳 +2 位作者 于英杰 林刚 孙威江 《食品与生物技术学报》 CAS CSCD 北大核心 2024年第1期48-59,共12页
为构建高质量的六大茶类识别模型,本研究中收集了370份样品,通过采集其近红外光谱(near-infrared spectroscopy,NIRS),结合光谱预处理、特征提取以及数据挖掘分类器算法,建立六大茶类快速识别模型。结果表明:1)支持向量机(support vecto... 为构建高质量的六大茶类识别模型,本研究中收集了370份样品,通过采集其近红外光谱(near-infrared spectroscopy,NIRS),结合光谱预处理、特征提取以及数据挖掘分类器算法,建立六大茶类快速识别模型。结果表明:1)支持向量机(support vector machine,SVM)与随机森林(random forest,RF)分类器皆适于六大茶类快速识别模型的构建;2)SVM分类器更适于结合原始光谱(original spectrum,OS)建模,预处理易使基于该分类器建立的模型鉴别性能减弱;3)随机森林(RF)分类器更适用于预处理后光谱建模,所得模型较OS模型在识别正确率(recognition accuracy,RA)及受试者工作特征曲线下面积(area under the curve,AUC)均得到明显提升;4)特征提取中线性判别分析(linear discriminant analysis,LDA)算法表现最好,所得模型的RA较OS模型明显提升,其中最佳模型OS-LDA-SVM的RA为100.00%,AUC为1.00,识别正确率高、泛化能力强、模型性能优异,可产业化应用。综上所述,近红外光谱结合预处理、特征提取算法及分类器建立模型,进行六大茶类识别的可行性强,模型的识别正确率高、性能优异,可为茶叶贸易的茶类快速识别提供科学、准确、高效的技术支撑,为国际茶类识别模型的产业化应用奠定基础。 展开更多
关键词 近红外光谱 茶类识别 支持向量机 随机森林 线性判别分析
下载PDF
一种稳健的基于VisemicLDA的口形动态特征及听视觉语音识别 被引量:4
15
作者 谢磊 付中华 +4 位作者 蒋冬梅 赵荣椿 Werner Verhelst Hichem Sahli Jan Conlenis 《电子与信息学报》 EI CSCD 北大核心 2005年第1期64-68,共5页
视觉特征提取是听视觉语音识别研究的热点问题。文章引入了一种稳健的基于Visemic LDA的口形动态特征,这种特征充分考虑了发音时口形轮廓的变化及视觉Viseme划分。文章同时提出了一利利用语音识别结果进行LDA训练数据自动标注的方法。... 视觉特征提取是听视觉语音识别研究的热点问题。文章引入了一种稳健的基于Visemic LDA的口形动态特征,这种特征充分考虑了发音时口形轮廓的变化及视觉Viseme划分。文章同时提出了一利利用语音识别结果进行LDA训练数据自动标注的方法。这种方法免去了繁重的人工标注工作,避免了标注错误。实验表明,将'VisemicLDA视觉特征引入到听视觉语音识别中,可以大大地提高噪声条件下语音识别系统的识别率;将这种视觉特征与多数据流HMM结合之后,在信噪比为10dB的强噪声情况下,识别率仍可以达到80%以上。 展开更多
关键词 语音识别 听视觉语音识别 ASM linear discriminant Analysis(lda) Viseme
下载PDF
基于优化的LDA算法人脸识别研究 被引量:25
16
作者 庄哲民 张阿妞 李芬兰 《电子与信息学报》 EI CSCD 北大核心 2007年第9期2047-2049,共3页
提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩... 提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩阵使传统的Fisher准则能够最优化,克服了边缘类对选择最佳投影方向的影响;同时,利用因数分解的方法避免了对矩阵求逆,解决了小样本问题。依据经验选取适当的e值,得到最佳的识别效果。实验结果表明,人脸识别效果优于传统LDA方法。 展开更多
关键词 线性判别分析(lda) 人脸识别 类间离散度 类内离散度 特征提取
下载PDF
基于粒子群算法的LDA实现方法研究 被引量:8
17
作者 钟伟 黄元亮 +1 位作者 郝真真 姜甜甜 《计算机工程与应用》 CSCD 北大核心 2017年第1期39-43,共5页
针对传统线性判别分析方法存在的问题,在研究现有理论成果的基础上,提出一种新的LDA实现方法。该方法首先对原有的Fisher准则进行修正,然后通过迭代搜寻最佳鉴别矢量,最后对获取的鉴别矢量进行比较分析。在标准的JAFFE人脸库上的表情识... 针对传统线性判别分析方法存在的问题,在研究现有理论成果的基础上,提出一种新的LDA实现方法。该方法首先对原有的Fisher准则进行修正,然后通过迭代搜寻最佳鉴别矢量,最后对获取的鉴别矢量进行比较分析。在标准的JAFFE人脸库上的表情识别和地区综合消费水平的评价中的实验结果表明,此算法不仅具有良好的识别效果而且还可以突破样本维数的限制;与其他LDA算法相比,该算法更具灵活性且更易于实现。 展开更多
关键词 线性判别式分析 投影矢量 离散度矩阵 粒子群算法 PSO-lda算法
下载PDF
基于鉴别能力分析和LDA-LPP算法的人脸识别 被引量:15
18
作者 曹洁 吴迪 李伟 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第6期1527-1531,共5页
针对人脸识别中的DCT系数选择问题和如何从全局和局部同时提取识别特征的问题,提出了一种基于鉴别能力分析和LDA-LPP的人脸识别算法。即先对人脸图像进行DCT变换,利用鉴别能力分析方法进行DCT系数的选择,融合LDA和LPP降维技术进行降维处... 针对人脸识别中的DCT系数选择问题和如何从全局和局部同时提取识别特征的问题,提出了一种基于鉴别能力分析和LDA-LPP的人脸识别算法。即先对人脸图像进行DCT变换,利用鉴别能力分析方法进行DCT系数的选择,融合LDA和LPP降维技术进行降维处理,不仅可以保持数据的全局性,同时也能够保持数据的局部性。在ORL人脸库和Yale人脸库上的实验表明,本文方法可以选择有效的DCT系数,明显提高了识别精度和鲁棒性。 展开更多
关键词 计算机应用 鉴别能力分析 离散余弦变换 线性鉴别分析 局部保持投影
下载PDF
基于PLS-LDA和拉曼光谱快速定性识别食用植物油 被引量:16
19
作者 吴静珠 石瑞杰 +2 位作者 陈岩 刘翠玲 徐云 《食品工业科技》 CAS CSCD 北大核心 2014年第6期55-58,共4页
以6种食用油共计23个样本为分析对象,采用偏最小二乘线性判别分析法(PLS-LDA)和拉曼光谱进行单一种类(橄榄油、花生油和玉米油)食用油快速定性检测,通过自适应迭代惩罚最小二乘法(airPLS)对拉曼信号进行背景扣除,以及蒙特卡洛无信息变... 以6种食用油共计23个样本为分析对象,采用偏最小二乘线性判别分析法(PLS-LDA)和拉曼光谱进行单一种类(橄榄油、花生油和玉米油)食用油快速定性检测,通过自适应迭代惩罚最小二乘法(airPLS)对拉曼信号进行背景扣除,以及蒙特卡洛无信息变量消除法筛选波长变量,不但有效减少了波长点数,降低了建模运算量,而且提高了单一种类食用油的识别率,使得总体识别率均高于90%,并在此基础上进一步提出了采用PLS-LDA进行多种类食用油识别的检测流程。实验结果表明PLS-LDA在食用油定性识别检测中具有较好的应用前景和可行性,该方法也可为定性检测食品及农产品品质提供借鉴。 展开更多
关键词 偏最小二乘线性判别分析法 拉曼光谱 食用植物油 蒙特卡洛无信息变量消除法
下载PDF
基于集成学习的规范化LDA人脸识别 被引量:6
20
作者 张燕平 窦蓉蓉 +1 位作者 赵姝 曹振田 《计算机工程》 CAS CSCD 北大核心 2010年第14期144-146,共3页
针对人脸识别问题中经常面临的"小样本"问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高... 针对人脸识别问题中经常面临的"小样本"问题,在规范化的LDA算法的基础上加以改进,并结合集成学习的方法,利用Adaboost算法,在每一次的迭代过程中引进一个加权函数对难以分离的样本增加权重。增加分类器之间的差异度,从而提高样本在新的特征空间中的可分离性,将识别率提高至98.5%。通过ORL数据库的大量实验表明,该算法比传统算法有更好的性能。 展开更多
关键词 人脸识别 规范化线性鉴别分析 集成学习
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部