期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
A Highly Accurate Dysphonia Detection System Using Linear Discriminant Analysis
1
作者 Anas Basalamah Mahedi Hasan +1 位作者 Shovan Bhowmik Shaikh Akib Shahriyar 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1921-1938,共18页
The recognition of pathological voice is considered a difficult task for speech analysis.Moreover,otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysph... The recognition of pathological voice is considered a difficult task for speech analysis.Moreover,otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysphonia that are caused by voice alteration of vocal folds and their accuracy is between 60%–70%.To enhance detection accuracy and reduce processing speed of dysphonia detection,a novel approach is proposed in this paper.We have leveraged Linear Discriminant Analysis(LDA)to train multiple Machine Learning(ML)models for dysphonia detection.Several ML models are utilized like Support Vector Machine(SVM),Logistic Regression,and K-nearest neighbor(K-NN)to predict the voice pathologies based on features like Mel-Frequency Cepstral Coefficients(MFCC),Fundamental Frequency(F0),Shimmer(%),Jitter(%),and Harmonic to Noise Ratio(HNR).The experiments were performed using Saarbrucken Voice Data-base(SVD)and a privately collected dataset.The K-fold cross-validation approach was incorporated to increase the robustness and stability of the ML models.According to the experimental results,our proposed approach has a 70%increase in processing speed over Principal Component Analysis(PCA)and performs remarkably well with a recognition accuracy of 95.24%on the SVD dataset surpassing the previous best accuracy of 82.37%.In the case of the private dataset,our proposed method achieved an accuracy rate of 93.37%.It can be an effective non-invasive method to detect dysphonia. 展开更多
关键词 Dimensionality reduction dysphonia detection linear discriminant analysis logistic regression speech feature extraction support vector machine
下载PDF
A New Extended BIC and Sequential Lasso Regression Analysis and Their Application in Classification
2
作者 Jie Chen Wanzhou Ye 《Advances in Pure Mathematics》 2023年第5期284-302,共19页
In this paper, firstly, we propose a new method for choosing regularization parameter λ for lasso regression, which differs from traditional method such as multifold cross-validation, our new method gives the maximum... In this paper, firstly, we propose a new method for choosing regularization parameter λ for lasso regression, which differs from traditional method such as multifold cross-validation, our new method gives the maximum value of parameter λ directly. Secondly, by considering another prior form over model space in the Bayes approach, we propose a new extended Bayes information criterion family, and under some mild condition, our new EBIC (NEBIC) is shown to be consistent. Then we apply our new method to choose parameter for sequential lasso regression which selects features by sequentially solving partially penalized least squares problems where the features selected in earlier steps are not penalized in the subsequent steps. Then sequential lasso uses NEBIC as the stopping rule. Finally, we apply our algorithm to identify the nonzero entries of precision matrix for high-dimensional linear discrimination analysis. Simulation results demonstrate that our algorithm has a lower misclassification rate and less computation time than its competing methods under considerations. 展开更多
关键词 Regularization Parameter Sequential Procedure BIC linear discrimination analysis Feature Selection
下载PDF
Direct linear discriminant analysis based on column pivoting QR decomposition and economic SVD
3
作者 胡长晖 路小波 +1 位作者 杜一君 陈伍军 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期395-399,共5页
A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl... A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices. 展开更多
关键词 direct linear discriminant analysis column pivoting orthogonal triangular decomposition economic singular value decomposition dimension reduction feature extraction
下载PDF
Balanced multiple weighted linear discriminant analysis and its application to visual process monitoring 被引量:1
4
作者 Weipeng Lu Xuefeng Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期128-137,共10页
Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear d... Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear discriminant analysis(BMWLDA).Then,we combine BMWLDA with self-organizing map(SOM)for visual monitoring of industrial operation processes.BMWLDA can extract the discriminative feature vectors from the original industrial data and maximally separate industrial operation states in the space spanned by these discriminative feature vectors.When the discriminative feature vectors are used as the input to SOM,the training result of SOM can differentiate industrial operation states clearly.This function improves the performance of visual monitoring.Continuous stirred tank reactor is used to verify that the class separation performance of BMWLDA is more effective than that of traditional linear discriminant analysis,approximate pairwise accuracy criterion,max–min distance analysis,maximum margin criterion,and local Fisher discriminant analysis.In addition,the method that combines BMWLDA with SOM can effectively perform visual process monitoring in real time. 展开更多
关键词 linear discriminant analysis Process monitoring Self-organizing map Feature extraction Continuous stirred tank reactor process
下载PDF
Kernel Model Applied in Kernel Direct Discriminant Analysis for the Recognition of Face with Nonlinear Variations 被引量:1
5
作者 李粉兰 徐可欣 《Transactions of Tianjin University》 EI CAS 2006年第2期147-152,共6页
A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate it... A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models. 展开更多
关键词 face recognition kernel method: kernel direct discriminant analysis direct linear discriminant analysis
下载PDF
Emotion recognition of Uyghur speech using uncertain linear discriminant analysis
6
作者 Tashpolat Nizamidin Zhao Li +2 位作者 Zhang Mingyang Xu Xinzhou Askar Hamdulla 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期437-443,共7页
To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conven... To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conventional linear discriminant analysis(LDA),uncertainties of the noisy or distorted input data ae employed in order to estimate maximaiy discriminant directions.The effectiveness of the proposed uncertain LDA(ULDA)is demonstrated in the Uyghur speech emotion recognition task.The emotional features of Uyghur speech,especially,the fundamental fequency and formant,a e analyzed in the collected emotional data.Then,ULDA is employed in dimensionality reduction of emotional features and better performance is achieved compared with other dimensionality reduction techniques.The speech emotion recognition of Uyghur is implemented by feeding the low-dimensional data to support vector machine(SVM)based on the proposed ULDA.The experimental results show that when employing a appropriate uncertainty estimation algorithm,uncertain LDA outperforms the conveetional LDA counterpart on Uyghur speech emotion recognition. 展开更多
关键词 Uyghur language speech emotion corpus PITCH FORMANT uncertain linear discriminant analysis (ULDA)
下载PDF
Linear Discriminant Analysis and Kernel Vector Quantization for Mandarin Digits Recognition
7
作者 赵军辉 谢湘 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2004年第4期385-388,共4页
Linear discriminant analysis and kernel vector quantization are integrated into vector quantization based speech recognition system for improving the recognition accuracy of Mandarin digits. These techniques increase ... Linear discriminant analysis and kernel vector quantization are integrated into vector quantization based speech recognition system for improving the recognition accuracy of Mandarin digits. These techniques increase the class separability and optimize the clustering procedure. Speaker-dependent (SD) and speaker-independent (SI) experiments are performed to evaluate the performance of the proposed method. The experiment results show that the proposed method is capable of reaching the word error rate of 3.76% in SD case and 6.60 % in SI case. Such a system can be suitable for being embedded in personal digital assistant(PDA), mobile phone and so on to perform voice controlling such as digit dialing, calculating, etc. 展开更多
关键词 linear discriminant analysis kernel vector quantization speech recognition
下载PDF
Incremental Linear Discriminant Analysis Dimensionality Reduction and 3D Dynamic Hierarchical Clustering WSNs
8
作者 G.Divya Mohana Priya M.Karthikeyan K.Murugan 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期471-486,共16页
Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimu... Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimum clusters count and thus,the total consumption of energy is optimal.However,the computational complexity will be increased due to data dimension,and this leads to increase in delay in network data transmission and reception.For solving the above-mentioned issues,an efficient dimensionality reduction model based on Incremental Linear Discriminant Analysis(ILDA)is proposed for 3D hierarchical clustering WSNs.The major objective of the proposed work is to design an efficient dimensionality reduction and energy efficient clustering algorithm in 3D hierarchical clustering WSNs.This ILDA approach consists of four major steps such as data dimension reduction,distance similarity index introduction,double cluster head technique and node dormancy approach.This protocol differs from normal hierarchical routing protocols in formulating the Cluster Head(CH)selection technique.According to node’s position and residual energy,optimal cluster-head function is generated,and every CH is elected by this formulation.For a 3D spherical structure,under the same network condition,the performance of the proposed ILDA with Improved Dynamic Hierarchical Clustering(IDHC)is compared with Distributed Energy-Efficient Clustering(DEEC),Hybrid Energy Efficient Distributed(HEED)and Stable Election Protocol(SEP)techniques.It is observed that the proposed ILDA based IDHC approach provides better results with respect to Throughput,network residual energy,network lifetime and first node death round. 展开更多
关键词 LIFETIME energy optimization hierarchical routing protocol data transmission reduction incremental linear discriminant analysis(ILDA) three-dimensional(3D)space wireless sensor network(WSN)
下载PDF
Unsupervised Linear Discriminant Analysis
9
作者 唐宏 方涛 +1 位作者 施鹏飞 唐国安 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期40-42,共3页
An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-neares... An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective. 展开更多
关键词 linear discriminant analysis(LDA) unsupervised learning neighbor graph
下载PDF
A Comparison of Two Linear Discriminant Analysis Methods That Use Block Monotone Missing Training Data
10
作者 Phil D. Young Dean M. Young Songthip T. Ounpraseuth 《Open Journal of Statistics》 2016年第1期172-185,共14页
We revisit a comparison of two discriminant analysis procedures, namely the linear combination classifier of Chung and Han (2000) and the maximum likelihood estimation substitution classifier for the problem of classi... We revisit a comparison of two discriminant analysis procedures, namely the linear combination classifier of Chung and Han (2000) and the maximum likelihood estimation substitution classifier for the problem of classifying unlabeled multivariate normal observations with equal covariance matrices into one of two classes. Both classes have matching block monotone missing training data. Here, we demonstrate that for intra-class covariance structures with at least small correlation among the variables with missing data and the variables without block missing data, the maximum likelihood estimation substitution classifier outperforms the Chung and Han (2000) classifier regardless of the percent of missing observations. Specifically, we examine the differences in the estimated expected error rates for these classifiers using a Monte Carlo simulation, and we compare the two classifiers using two real data sets with monotone missing data via parametric bootstrap simulations. Our results contradict the conclusions of Chung and Han (2000) that their linear combination classifier is superior to the MLE classifier for block monotone missing multivariate normal data. 展开更多
关键词 linear Discriminant analysis Monte Carlo Simulation Maximum Likelihood Estimator Expected Error Rate Conditional Error Rate
下载PDF
Unveiling the Predictive Capabilities of Machine Learning in Air Quality Data Analysis: A Comparative Evaluation of Different Regression Models
11
作者 Mosammat Mustari Khanaum Md Saidul Borhan +2 位作者 Farzana Ferdoush Mohammed Ali Nause Russel Mustafa Murshed 《Open Journal of Air Pollution》 2023年第4期142-159,共18页
Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for rep... Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for reporting site-specific air pollution levels. Accurately predicting air quality, as measured by the AQI, is essential for effective air pollution management. In this study, we aim to identify the most reliable regression model among linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression, and K-nearest neighbors (KNN). We conducted four different regression analyses using a machine learning approach to determine the model with the best performance. By employing the confusion matrix and error percentages, we selected the best-performing model, which yielded prediction error rates of 22%, 23%, 20%, and 27%, respectively, for LDA, QDA, logistic regression, and KNN models. The logistic regression model outperformed the other three statistical models in predicting AQI. Understanding these models' performance can help address an existing gap in air quality research and contribute to the integration of regression techniques in AQI studies, ultimately benefiting stakeholders like environmental regulators, healthcare professionals, urban planners, and researchers. 展开更多
关键词 Regression analysis Air Quality Index linear Discriminant analysis Quadratic Discriminant analysis Logistic Regression K-Nearest Neighbors Machine Learning Big Data analysis
下载PDF
Modified algorithm of principal component analysis for face recognition 被引量:3
12
作者 罗琳 邹采荣 仰枫帆 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期26-30,共5页
In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algori... In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA. 展开更多
关键词 face recognition principal component analysis linear discriminant analysis
下载PDF
Machine Learning-based USD/PKR Exchange Rate Forecasting Using Sentiment Analysis of Twitter Data 被引量:1
13
作者 Samreen Naeem Wali Khan Mashwani +4 位作者 Aqib Ali M.Irfan Uddin Marwan Mahmoud Farrukh Jamal Christophe Chesneau 《Computers, Materials & Continua》 SCIE EI 2021年第6期3451-3461,共11页
This study proposes an approach based on machine learning to forecast currency exchange rates by applying sentiment analysis to messages on Twitter(called tweets).A dataset of the exchange rates between the United Sta... This study proposes an approach based on machine learning to forecast currency exchange rates by applying sentiment analysis to messages on Twitter(called tweets).A dataset of the exchange rates between the United States Dollar(USD)and the Pakistani Rupee(PKR)was formed by collecting information from a forex website as well as a collection of tweets from the business community in Pakistan containing finance-related words.The dataset was collected in raw form,and was subjected to natural language processing by way of data preprocessing.Response variable labeling was then applied to the standardized dataset,where the response variables were divided into two classes:“1”indicated an increase in the exchange rate and“−1”indicated a decrease in it.To better represent the dataset,we used linear discriminant analysis and principal component analysis to visualize the data in three-dimensional vector space.Clusters that were obtained using a sampling approach were then used for data optimization.Five machine learning classifiers—the simple logistic classifier,the random forest,bagging,naïve Bayes,and the support vector machine—were applied to the optimized dataset.The results show that the simple logistic classifier yielded the highest accuracy of 82.14%for the USD and the PKR exchange rates forecasting. 展开更多
关键词 Machine learning exchange rate sentiment analysis linear discriminant analysis principal component analysis simple logistic
下载PDF
Moving-window bis-correlation coefficients method for visible and near-infrared spectral discriminant analysis with applications 被引量:1
14
作者 Lijun Yao Weiqun Xu +1 位作者 Tao Pan Jiemei Chen 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第2期65-77,共13页
The moving window bis corelation coefficients(MW BiCC)was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and B-thalassemia with visible and near-infrared(Vis NIR)spectroscopy.The we... The moving window bis corelation coefficients(MW BiCC)was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and B-thalassemia with visible and near-infrared(Vis NIR)spectroscopy.The well-performed moving window principal component analysis linear discriminant analysis(MWPCA-LDA)was also conducted for comparison.A total of 306 transgenic(positive)and 150 nont ransgenic(negative)leave samples of sugarcane were collected and divided to calibration,prediction,and validation.The diffuse reflection spectra were corected using Savitzky-Golay(SG)smoothing with first-order derivative(d=1),third-degree polynomial(p=3)and 25 smpothing points(m=25).The selected waveband was 736-1054nm with MW-BiCC,and the positive and negative validation recognition rates(V_REC^(+),VREC^(-))were 100%,98.0%,which achieved the same effect as MWPCA-LDA.Another example,the 93 B-thalassemia(positive)and 148 nonthalassemia(negative)of human hemolytic samples were colloctod.The transmission spectra were corrected using SG smoothing withd=1,p=3 and m=53.Using M W-BiCC,many best wavebands were selected(e.g.,1116-1146,17941848 and 22842342nm).The V_REC^(+)and V_REC^(-)were both 100%,which achieved the same effect as MW-PCA-LDA.Importantly,the BICC only required ca lculating correlation cofficients between the spectrum of prediction sample and the average spectra of two types of calibration samples.Thus,BiCC was very simple in algorithm,and expected to obtain more applications.The results first confirmed the feasibility of distinguishing B-thalassemia and normal control samples by NIR spectroscopy,and provided a promising simple tool for large population thalassemia screening. 展开更多
关键词 Visible and near infrared spectroscopic discriminant analysis transgenic sugarcane leaves B-thalassemia moving-window bis-correlation cofficients moving-window principal component analysis linear discriminant analysis.
下载PDF
Face Recognition Using Kernel Discriminant Analysis 被引量:1
15
作者 张燕昆 Gu +2 位作者 Xuefeng Liu Chongqing 《High Technology Letters》 EI CAS 2002年第4期43-46,共4页
Linear discrimiant analysis (LDA) has been used in face recognition. But it is difficult to handle the high nonlinear problems, such as changes of large viewpoint and illumination. In order to overcome these problems,... Linear discrimiant analysis (LDA) has been used in face recognition. But it is difficult to handle the high nonlinear problems, such as changes of large viewpoint and illumination. In order to overcome these problems, kernel discriminant analysis for face recognition is presented. This approach adopts the kernel functions to replace the dot products of nonlinear mapping in the high dimensional feature space, and then the nonlinear problem can be solved in the input space conveniently without explicit mapping. Two face databases are given. 展开更多
关键词 face recognition linear discriminant analysis kernel discriminant analysis
下载PDF
Image Analysis in Microbiology: A Review 被引量:1
16
作者 Evgeny Puchkov 《Journal of Computer and Communications》 2016年第15期8-32,共26页
This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) object... This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) objects in the microbiological research. This is the way of making many visual inspection assays more objective and less time and labor consuming. Also, it can provide new visually inaccessible information on relation between some optical parameters and various biological features of the microbial cul-tures. Of special interest is application of image analysis in fluorescence microscopy as it opens new ways of using fluorescence based methodology for single microbial cell studies. Examples of using image analysis in the studies of both the macroscopic and the microscopic microbiological objects obtained by various imaging techniques are presented and discussed. 展开更多
关键词 Computer Image analysis Microorganisms VIABILITY Yeast Bacteria Fungi Colony Counter Microbial Identification Multispectral Imaging Hyperspectral Imaging Diffraction Pattern Imaging Scatter Pattern Imaging Multifractal analysis Support Vector Machines Principal Component analysis linear Discriminant Analysi IMAGEJ Matlab Fluorescence Microscopy Microfluorimetry Green Fluorescent Protein (GFP)
下载PDF
Texture Analysis and Characteristic Identification About Plaque Tissues of IVUS 被引量:1
17
作者 DONG Hai-yan LI Hong 《Chinese Journal of Biomedical Engineering(English Edition)》 2010年第2期47-55,共9页
Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the graysc... Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the grayscale differences of them are not so apparent.In this paper a new textural characteristic space vector was formed by the combination of Co-occurrence Matrix and fraction methods.The vector was projected to the new characteristic space after multiplied by a projective matrix which can best classify those plaques according to the Fisher linear discriminant.Then the classification was completed in the new vector space.Experimental results found that the veracity of this classification could reach up to 88%,which would be an accessorial tool for doctors to identify each plaque. 展开更多
关键词 intravascular ultrasound statistical texture fractional texture Fisher linear discriminant analysis
下载PDF
Statistical Analysis with Dingo Optimizer Enabled Routing for Wireless Sensor Networks
18
作者 Abdulaziz S.Alghamdi Randa Alharbi +1 位作者 Suliman A.Alsuhibany Sayed Abdel-Khalek 《Computers, Materials & Continua》 SCIE EI 2022年第11期2865-2878,共14页
Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy dat... Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission.But the available routing techniques do not involve security in the design of routing techniques.This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme(SADO-RRS)for WSN.The proposed SADO-RRS technique aims to detect the existence of attacks and optimal routes in WSN.In addition,the presented SADORRS technique derives a new statistics based linear discriminant analysis(LDA)for attack detection,Moreover,a trust based dingo optimizer(TBDO)algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN.Besides,the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN.For demonstrating the enhanced outcomes of the SADO-RRS technique,a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS technique. 展开更多
关键词 Statistical analysis RELIABILITY ROUTING wireless sensor networks linear discriminant analysis dingo optimizer SECURITY
下载PDF
An Optimization Criterion for Generalized Marginal Fisher Analysis on Undersampled Problems
19
作者 Wu-Yi Yang Sheng-Xing Liu +1 位作者 Tai-Song Jin Xiao-Mei Xu 《International Journal of Automation and computing》 EI 2011年第2期193-200,共8页
Marginal Fisher analysis (MFA) not only aims to maintain the original relations of neighboring data points of the same class but also wants to keep away neighboring data points of the different classes.MFA can effec... Marginal Fisher analysis (MFA) not only aims to maintain the original relations of neighboring data points of the same class but also wants to keep away neighboring data points of the different classes.MFA can effectively overcome the limitation of linear discriminant analysis (LDA) due to data distribution assumption and available projection directions.However,MFA confronts the undersampled problems.Generalized marginal Fisher analysis (GMFA) based on a new optimization criterion is presented,which is applicable to the undersampled problems.The solutions to the proposed criterion for GMFA are derived,which can be characterized in a closed form.Among the solutions,two specific algorithms,namely,normal MFA (NMFA) and orthogonal MFA (OMFA),are studied,and the methods to implement NMFA and OMFA are proposed.A comparative study on the undersampled problem of face recognition is conducted to evaluate NMFA and OMFA in terms of classification accuracy,which demonstrates the effectiveness of the proposed algorithms. 展开更多
关键词 linear discriminant analysis (LDA) dimension reduction marginal Fisher analysis (MFA) normal MFA (NMFA) orthogonal MFA (OMFA).
下载PDF
Discrimination of TCM constitutions by biochemical and routine urine indexes
20
作者 Xiaoling Liu Pengfei Zhao +7 位作者 Jianhua Zhen Shen Zhang Hesong Wang Yuxiu Sun Wei Wang Tingjian Wang Kaiwen Hu Guangrui Huang 《Journal of Traditional Chinese Medical Sciences》 2022年第2期153-159,共7页
Objective:To investigate whether the specific traditional Chinese medicine(TCM)constitution of individuals can be defined by certain biological indexes instead of answering the questionnaire,and to explore the possibi... Objective:To investigate whether the specific traditional Chinese medicine(TCM)constitution of individuals can be defined by certain biological indexes instead of answering the questionnaire,and to explore the possibility of discriminating nine TCM constitutions from each other simultaneously using biological indexes.Methods:Blood and urine samples from 152 individuals with nine TCM constitutions were collected,and the related biological indexes were analyzed combining ANOVA,multiple comparison,discriminant analysis,and support vector machine.Results:We found that 4 out of 24 blood routine indexes,7 out of 10 urine routine indexes,and 12 out of 32 biochemical indexes showed differences among the constitutions.High-sensitivity C-reactive protein,apolipoprotein A1,and alkaline phosphatase were potential candidates for screening out individuals with unbalanced constitutions.Combining uric acid,high-density lipoprotein,apolipoprotein A1,creatine kinase,total protein,aspartate aminotransferase,total bile acid,dehydrogenase,sodium,and calcium levels had the potential to directly distinguish the nine TCM constitutions from each other.Among these indexes,the highest ratio of discriminant analysis between two constitutions was 95.5%,while the lowest was 66.1%.Conclusion:Our results suggest that some biochemical and urine indexes are related to various TCM constitutions,and thus they have the potential to be used for TCM constitution classification. 展开更多
关键词 Traditional Chinese medicine Constitution classification Balance constitution Unbalanced constitutions Biochemical indexes Routine urine indexes linear discriminant analysis
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部