The idea of linear Diophantine fuzzy set(LDFS)theory with its control parameters is a strong model for machine learning and optimization under uncertainty.The activity times in the critical path method(CPM)representat...The idea of linear Diophantine fuzzy set(LDFS)theory with its control parameters is a strong model for machine learning and optimization under uncertainty.The activity times in the critical path method(CPM)representation procedures approach are initially static,but in the Project Evaluation and Review Technique(PERT)approach,they are probabilistic.This study proposes a novel way of project review and assessment methodology for a project network in a linear Diophantine fuzzy(LDF)environment.The LDF expected task time,LDF variance,LDF critical path,and LDF total expected time for determining the project network are all computed using LDF numbers as the time of each activity in the project network.The primary premise of the LDF-PERT approach is to address ambiguities in project network activity timesmore simply than other approaches such as conventional PERT,Fuzzy PERT,and so on.The LDF-PERT is an efficient approach to analyzing symmetries in fuzzy control systems to seek an optimal decision.We also present a new approach for locating LDF-CPM in a project network with uncertain and erroneous activity timings.When the available resources and activity times are imprecise and unpredictable,this strategy can help decision-makers make better judgments in a project.A comparison analysis of the proposed technique with the existing techniques has also been discussed.The suggested techniques are demonstrated with two suitable numerical examples.展开更多
We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magne...We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.展开更多
A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor ha...A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor has a significant low-cost advantage in long-distance linear drive.The proposed FMFSLM’s structure and working principle were introduced.Further,the thrust force expression of the motor was established.The thrust force components triggering thrust force ripple were investigated,and their expressions can be obtained according to the inductances’Fourier series expressions.Resultantly,the relationship between the harmonics of thrust force and that of self-and mutual inductances was revealed clearly.Based on the relationship,a skewed secondary should be practical to reduce the thrust force ripple.Thus,the effect of employing a skewed secondary to the proposed FMFSLM was investigated,and an optimized skewing span distance was determined.Finite element analysis(FEA)was conducted to validate the exactness of the theoretical analysis.The simulation results indicate that the strategy of suppressing thrust force ripple has a significant effect.Meanwhile,the motor maintains a good efficiency characteristic.The results of the prototype experiment are in good agreement with FEAs,which further verifies the proposed modular interior FMFSLM’s practicability.展开更多
Monitoring the status of linear guide rails is essential because they are important components in linear motion mechanical production.Thus,this paper proposes a new method of conducting the fault diagnosis of linear g...Monitoring the status of linear guide rails is essential because they are important components in linear motion mechanical production.Thus,this paper proposes a new method of conducting the fault diagnosis of linear guide rails.First,synchrosqueezing transform(SST)combined with Gaussian high-pass filter,termed as SSTG,is proposed to process vibration signals of linear guide rails and obtain time-frequency images,thus helping realize fault feature visual enhancement.Next,the coordinate attention(CA)mechanism is introduced to promote the DenseNet model and obtain the CA-DenseNet deep learning framework,thus realizing accurate fault classifica-tion.Comparison experiments with other methods reveal that the proposed method has a high classification accuracy of up to 95.0%.The experimental results further demonstrate the effectiveness and robustness of the proposed method for the fault diagnosis of linear guide rails.展开更多
We study distributed optimization problems over a directed network,where nodes aim to minimize the sum of local objective functions via directed communications with neighbors.Many algorithms are designed to solve it f...We study distributed optimization problems over a directed network,where nodes aim to minimize the sum of local objective functions via directed communications with neighbors.Many algorithms are designed to solve it for synchronized or randomly activated implementation,which may create deadlocks in practice.In sharp contrast,we propose a fully asynchronous push-pull gradient(APPG) algorithm,where each node updates without waiting for any other node by using possibly delayed information from neighbors.Then,we construct two novel augmented networks to analyze asynchrony and delays,and quantify its convergence rate from the worst-case point of view.Particularly,all nodes of APPG converge to the same optimal solution at a linear rate of O(λ^(k)) if local functions have Lipschitz-continuous gradients and their sum satisfies the Polyak-?ojasiewicz condition(convexity is not required),where λ ∈(0,1) is explicitly given and the virtual counter k increases by one when any node updates.Finally,the advantage of APPG over the synchronous counterpart and its linear speedup efficiency are numerically validated via a logistic regression problem.展开更多
Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as con...Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as convergence difficulty,model collapse,etc.In this work,an end-to-end speech enhancement model based on Wasserstein Generative Adversarial Networks is proposed,and some improvements have been made in order to get faster convergence speed and better generated speech quality.Specifically,in the generator coding part,each convolution layer adopts different convolution kernel sizes to conduct convolution operations for obtaining speech coding information from multiple scales;a gated linear unit is introduced to alleviate the vanishing gradient problem with the increase of network depth;the gradient penalty of the discriminator is replaced with spectral normalization to accelerate the convergence rate of themodel;a hybrid penalty termcomposed of L1 regularization and a scale-invariant signal-to-distortion ratio is introduced into the loss function of the generator to improve the quality of generated speech.The experimental results on both TIMIT corpus and Tibetan corpus show that the proposed model improves the speech quality significantly and accelerates the convergence speed of the model.展开更多
We consider the interior inverse scattering problem for recovering the shape of a penetrable partially coated cavity with external obstacles from the knowledge of measured scattered waves due to point sources.In the f...We consider the interior inverse scattering problem for recovering the shape of a penetrable partially coated cavity with external obstacles from the knowledge of measured scattered waves due to point sources.In the first part,we obtain the well-posedness of the direct scattering problem by the variational method.In the second part,we establish the mathematical basis of the linear sampling method to recover both the shape of the cavity,and the shape of the external obstacle,however the exterior transmission eigenvalue problem also plays a key role in the discussion of this paper.展开更多
A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes ...A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes guides a link failure.This link failure creates more data packet drops that can cause a long time delay.As a result,measuring accurate link failure time is the key factor in the MANET.This paper presents a Fuzzy Linear Regression Method to measure Link Failure(FLRLF)and provide an optimal route in the MANET-Internet of Things(IoT).This work aims to predict link failure and improve routing efficiency in MANET.The Fuzzy Linear Regression Method(FLRM)measures the long lifespan link based on the link failure.The mobile node group is built by the Received Signal Strength(RSS).The Hill Climbing(HC)method selects the Group Leader(GL)based on node mobility,node degree and node energy.Additionally,it uses a Data Gathering node forward the infor-mation from GL to the sink node through multiple GL.The GL is identified by linking lifespan and energy using the Particle Swarm Optimization(PSO)algo-rithm.The simulation results demonstrate that the FLRLF approach increases the GL lifespan and minimizes the link failure time in the MANET.展开更多
Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3...Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3AT) protein is considered the main invasive pathway for the parasite in erythrocytes that causes clinical symptoms for malaria in humans. The interactions between P. falciparum parasites and erythrocytes along this receptor have previously been explored. Short linear motifs (SLIMs) are short linear mediator sequences that involve several biological processes, acting as mediators of protein interactions identifiable by computational tools such as SLiMFinder. For a given protein, the identification of SLIMs allows predicting its interactors. Using the SLIMs approach, protein-protein interaction network analyses between P. falciparum and its human host, were used to identify a tryptophan-rich protein, A5K5E5_PLAVS as an essential interactor of B3AT. To better understand the interaction mechanism, a guided protein-protein docking approach based on SLIM motifs was performed for human B3AT and A5K5E5_PLAVS. The highlights of this important interaction between P. falciparum and its human host have the potential to pave the way to identify new therapeutic candidates.展开更多
The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLP...The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device.The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density.Conversely,there is a negative correlation observed between the heat flux density and the neutral pressure.When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa,the HIT-PSI has the capability to attain a heat flux of 10 MW·m-2 at the target plate.The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI.展开更多
The flexibility in radiotherapy can be improved if patients can be moved between any one of the department’s medical linear accelerators (LINACs) without the need to change anything in the patient’s treatment plan. ...The flexibility in radiotherapy can be improved if patients can be moved between any one of the department’s medical linear accelerators (LINACs) without the need to change anything in the patient’s treatment plan. For this to be possible, the dosimetric characteristics of the various accelerators must be the same, or nearly the same. The purpose of this work is to describe further and compare measurements and parameters after the initial vendor-recommended beam matching of the five LINACs. Deviations related to dose calculations and to beam matched accelerators may compromise treatment accuracy. The safest and most practical way to ensure that all accelerators are within clinical acceptable accuracy is to include TPS calculations in the LINACs matching evaluation. Treatment planning system (TPS) was used to create three photons plans with different field sizes 3 × 3 cm, 10 × 10 cm and 25 × 25 cm at a depth of 4.5 cm in Perspex. Calculated TPS plans were sent to Mosaiq to be delivered by five LINACs. TPS plans were compared with five LINACs measurements data using Gamma analyses of 2% and 2 mm. The results suggest that for four out of the five LINACs, there was generally good agreement, less than a 2% deviation between the planned dose distribution and the measured dose distribution. However, one specific LINAC named “Asterix” exhibited a deviation of 2.121% from the planned dose. The results show that all of the LINACs’ performance were within the acceptable deviation and delivering radiation dose consistently and accurately.展开更多
In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear perma...In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.展开更多
Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quas...Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.展开更多
Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used ...Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.展开更多
In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for i...In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method.展开更多
To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and thre...To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.展开更多
Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we r...Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we report a multiple redox-mediated linear paired electrolysis system,combining the hydrogen peroxide mediated cathode process with the I2 mediated anode process,and realize the conversion of furfural to furoic acid in both side of the dividedflow cell simultaneously.By reasonably controlling the cathode potential,the undesired water splitting reaction and furfural reduction side reactions are avoided.Under the galvanostatic electrolysis,the two-mediated electrode processes have good compatibility,which reduce the energy consumption by about 22%while improving the electronic efficiency by about 125%.This system provides a green electrochemical synthesis route with commercial prospects.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,...Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process.展开更多
This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)syste...This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.展开更多
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Grant No.GRANT3862].
文摘The idea of linear Diophantine fuzzy set(LDFS)theory with its control parameters is a strong model for machine learning and optimization under uncertainty.The activity times in the critical path method(CPM)representation procedures approach are initially static,but in the Project Evaluation and Review Technique(PERT)approach,they are probabilistic.This study proposes a novel way of project review and assessment methodology for a project network in a linear Diophantine fuzzy(LDF)environment.The LDF expected task time,LDF variance,LDF critical path,and LDF total expected time for determining the project network are all computed using LDF numbers as the time of each activity in the project network.The primary premise of the LDF-PERT approach is to address ambiguities in project network activity timesmore simply than other approaches such as conventional PERT,Fuzzy PERT,and so on.The LDF-PERT is an efficient approach to analyzing symmetries in fuzzy control systems to seek an optimal decision.We also present a new approach for locating LDF-CPM in a project network with uncertain and erroneous activity timings.When the available resources and activity times are imprecise and unpredictable,this strategy can help decision-makers make better judgments in a project.A comparison analysis of the proposed technique with the existing techniques has also been discussed.The suggested techniques are demonstrated with two suitable numerical examples.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1607403,2021YFA1600201,and 2022YFA1602603)the Natural Science Foundation of China (Grant Nos.U19A2093,U2032214,and U2032163)+5 种基金the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP 001)the Youth Innovation Promotion Association of CAS (Grant No.2021117)the Natural Science Foundation of Anhui Province (No.1908085QA15)the HFIPS Director’s Fund (Grant No.YZJJQY202304)the CASHIPS Director’s Fund (Grant No.YZJJ2022QN36)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.
基金supported by Shandong Provincial Natural Science Foundation under Grant ZR2020ME205.
文摘A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor has a significant low-cost advantage in long-distance linear drive.The proposed FMFSLM’s structure and working principle were introduced.Further,the thrust force expression of the motor was established.The thrust force components triggering thrust force ripple were investigated,and their expressions can be obtained according to the inductances’Fourier series expressions.Resultantly,the relationship between the harmonics of thrust force and that of self-and mutual inductances was revealed clearly.Based on the relationship,a skewed secondary should be practical to reduce the thrust force ripple.Thus,the effect of employing a skewed secondary to the proposed FMFSLM was investigated,and an optimized skewing span distance was determined.Finite element analysis(FEA)was conducted to validate the exactness of the theoretical analysis.The simulation results indicate that the strategy of suppressing thrust force ripple has a significant effect.Meanwhile,the motor maintains a good efficiency characteristic.The results of the prototype experiment are in good agreement with FEAs,which further verifies the proposed modular interior FMFSLM’s practicability.
基金supported by the following organizations:National Natural Science Foundation of China(Grant Nos.52375522,52207036,and 62203010)the Anhui Provincial Nat-ural Science Foundation(Grant Nos.2308085Y03 and 2208085QE167)+2 种基金the Project of the Outstanding Young Talents in Colleges and Universities of Anhui Province(Grant No.gxyqZD2022006)the College Natural Science Research Key project of Anhui Education Department(Grant No.KJ2021A0018)the University Outstanding Youth Research Project of Anhui Province(Grant No.2022AH030016)。
文摘Monitoring the status of linear guide rails is essential because they are important components in linear motion mechanical production.Thus,this paper proposes a new method of conducting the fault diagnosis of linear guide rails.First,synchrosqueezing transform(SST)combined with Gaussian high-pass filter,termed as SSTG,is proposed to process vibration signals of linear guide rails and obtain time-frequency images,thus helping realize fault feature visual enhancement.Next,the coordinate attention(CA)mechanism is introduced to promote the DenseNet model and obtain the CA-DenseNet deep learning framework,thus realizing accurate fault classifica-tion.Comparison experiments with other methods reveal that the proposed method has a high classification accuracy of up to 95.0%.The experimental results further demonstrate the effectiveness and robustness of the proposed method for the fault diagnosis of linear guide rails.
基金Supported by National Natural Science Foundation of China(62033006,62203254)。
文摘We study distributed optimization problems over a directed network,where nodes aim to minimize the sum of local objective functions via directed communications with neighbors.Many algorithms are designed to solve it for synchronized or randomly activated implementation,which may create deadlocks in practice.In sharp contrast,we propose a fully asynchronous push-pull gradient(APPG) algorithm,where each node updates without waiting for any other node by using possibly delayed information from neighbors.Then,we construct two novel augmented networks to analyze asynchrony and delays,and quantify its convergence rate from the worst-case point of view.Particularly,all nodes of APPG converge to the same optimal solution at a linear rate of O(λ^(k)) if local functions have Lipschitz-continuous gradients and their sum satisfies the Polyak-?ojasiewicz condition(convexity is not required),where λ ∈(0,1) is explicitly given and the virtual counter k increases by one when any node updates.Finally,the advantage of APPG over the synchronous counterpart and its linear speedup efficiency are numerically validated via a logistic regression problem.
基金supported by the National Science Foundation under Grant No.62066039.
文摘Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as convergence difficulty,model collapse,etc.In this work,an end-to-end speech enhancement model based on Wasserstein Generative Adversarial Networks is proposed,and some improvements have been made in order to get faster convergence speed and better generated speech quality.Specifically,in the generator coding part,each convolution layer adopts different convolution kernel sizes to conduct convolution operations for obtaining speech coding information from multiple scales;a gated linear unit is introduced to alleviate the vanishing gradient problem with the increase of network depth;the gradient penalty of the discriminator is replaced with spectral normalization to accelerate the convergence rate of themodel;a hybrid penalty termcomposed of L1 regularization and a scale-invariant signal-to-distortion ratio is introduced into the loss function of the generator to improve the quality of generated speech.The experimental results on both TIMIT corpus and Tibetan corpus show that the proposed model improves the speech quality significantly and accelerates the convergence speed of the model.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(2019D01A05)supported by the NSFC(11571132)。
文摘We consider the interior inverse scattering problem for recovering the shape of a penetrable partially coated cavity with external obstacles from the knowledge of measured scattered waves due to point sources.In the first part,we obtain the well-posedness of the direct scattering problem by the variational method.In the second part,we establish the mathematical basis of the linear sampling method to recover both the shape of the cavity,and the shape of the external obstacle,however the exterior transmission eigenvalue problem also plays a key role in the discussion of this paper.
文摘A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes guides a link failure.This link failure creates more data packet drops that can cause a long time delay.As a result,measuring accurate link failure time is the key factor in the MANET.This paper presents a Fuzzy Linear Regression Method to measure Link Failure(FLRLF)and provide an optimal route in the MANET-Internet of Things(IoT).This work aims to predict link failure and improve routing efficiency in MANET.The Fuzzy Linear Regression Method(FLRM)measures the long lifespan link based on the link failure.The mobile node group is built by the Received Signal Strength(RSS).The Hill Climbing(HC)method selects the Group Leader(GL)based on node mobility,node degree and node energy.Additionally,it uses a Data Gathering node forward the infor-mation from GL to the sink node through multiple GL.The GL is identified by linking lifespan and energy using the Particle Swarm Optimization(PSO)algo-rithm.The simulation results demonstrate that the FLRLF approach increases the GL lifespan and minimizes the link failure time in the MANET.
文摘Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3AT) protein is considered the main invasive pathway for the parasite in erythrocytes that causes clinical symptoms for malaria in humans. The interactions between P. falciparum parasites and erythrocytes along this receptor have previously been explored. Short linear motifs (SLIMs) are short linear mediator sequences that involve several biological processes, acting as mediators of protein interactions identifiable by computational tools such as SLiMFinder. For a given protein, the identification of SLIMs allows predicting its interactors. Using the SLIMs approach, protein-protein interaction network analyses between P. falciparum and its human host, were used to identify a tryptophan-rich protein, A5K5E5_PLAVS as an essential interactor of B3AT. To better understand the interaction mechanism, a guided protein-protein docking approach based on SLIM motifs was performed for human B3AT and A5K5E5_PLAVS. The highlights of this important interaction between P. falciparum and its human host have the potential to pave the way to identify new therapeutic candidates.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFE0303105)the Fundamental Research Funds for the Central Universities(Grant No.2022FRFK060021)the National MCF Energy Research and Development Program(Grant No.2019YFE03080300).
文摘The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device.The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density.Conversely,there is a negative correlation observed between the heat flux density and the neutral pressure.When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa,the HIT-PSI has the capability to attain a heat flux of 10 MW·m-2 at the target plate.The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI.
文摘The flexibility in radiotherapy can be improved if patients can be moved between any one of the department’s medical linear accelerators (LINACs) without the need to change anything in the patient’s treatment plan. For this to be possible, the dosimetric characteristics of the various accelerators must be the same, or nearly the same. The purpose of this work is to describe further and compare measurements and parameters after the initial vendor-recommended beam matching of the five LINACs. Deviations related to dose calculations and to beam matched accelerators may compromise treatment accuracy. The safest and most practical way to ensure that all accelerators are within clinical acceptable accuracy is to include TPS calculations in the LINACs matching evaluation. Treatment planning system (TPS) was used to create three photons plans with different field sizes 3 × 3 cm, 10 × 10 cm and 25 × 25 cm at a depth of 4.5 cm in Perspex. Calculated TPS plans were sent to Mosaiq to be delivered by five LINACs. TPS plans were compared with five LINACs measurements data using Gamma analyses of 2% and 2 mm. The results suggest that for four out of the five LINACs, there was generally good agreement, less than a 2% deviation between the planned dose distribution and the measured dose distribution. However, one specific LINAC named “Asterix” exhibited a deviation of 2.121% from the planned dose. The results show that all of the LINACs’ performance were within the acceptable deviation and delivering radiation dose consistently and accurately.
基金supported in part by National Natural Science Foundation of China(52177194)in part by State Key Laboratory of Large Electric Drive System and Equipment Technology(SKLLDJ012016006)+1 种基金in part by Key Research and Development Project of ShaanXi Province(2019GY-060)in part by Key Laboratory of Industrial Automation in ShaanXi Province(SLGPT2019KF01-12)(。
文摘In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403203 and 2021YFA1600201)the National Natural Science Foundation of China (Grant No. 12274414)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Contract No. JZHKYPT-2021-08)。
文摘Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.
基金supported by the National Key R&D Program of China (Grant No.2022YFB3206700)the Independent Research Project of the State Key Laboratory of Mechanical Transmission (Grant No.SKLMT-ZZKT-2022M06)the Innovation Group Science Fund of Chongqing Natural Science Foundation (Grant No.cstc2019jcyj-cxttX0003).
文摘Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.
基金National Natural Science Foundation of China under Grant No.51978125Open Fund Project of Research Center for Geotechnical and Structural Engineering Technology of Liaoning Province under Grant No.DLSZD2023[007]。
文摘In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method.
基金supported by the National Natural Science Foundation of China (No.52204085)the Interdisciplinary Research Project for Young Teachers of USTB,Fundamental Research Funds for the Central Universities (No.FRF-IDRY-21-006).
文摘To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.
基金This study is supported by the National Key Research and Development Program of China(2017YFB0307500).
文摘Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we report a multiple redox-mediated linear paired electrolysis system,combining the hydrogen peroxide mediated cathode process with the I2 mediated anode process,and realize the conversion of furfural to furoic acid in both side of the dividedflow cell simultaneously.By reasonably controlling the cathode potential,the undesired water splitting reaction and furfural reduction side reactions are avoided.Under the galvanostatic electrolysis,the two-mediated electrode processes have good compatibility,which reduce the energy consumption by about 22%while improving the electronic efficiency by about 125%.This system provides a green electrochemical synthesis route with commercial prospects.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.52074228,52305420,and 51875470)the China Postdoctoral Science Foundation(No.2023M742830)the Xi’an Beilin District Science and Technology Planning Project,China(No.GX2349).
文摘Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process.
基金supported in part by the Department of Navy award (N00014-22-1-2159)the National Science Foundation under award (ECCS-2227311)。
文摘This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.