In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to conti...In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to continuously adapt and converge to the optimal controller. The result differs from previous results in that the adaptive optimal controller is designed without the knowledge of the system dynamics and an initial stabilizing policy. Further, the controller is updated continuously using input-output data, as opposed to the commonly used switched/intermittent updates which can potentially lead to stability issues. An online state derivative estimator facilitates the design of a model-free controller. Gradient-based update laws are developed for online estimation of the optimal gain. Uniform exponential stability of the closed-loop system is established using the Lyapunov-based analysis, and a simulation example is provided to validate the theoretical contribution.展开更多
Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement ...Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.展开更多
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system mo...The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.展开更多
A finite dynamical system(FDS)over a lattice L is a pair(S(L),f),where S(L)is a left-L module and f is a mapping from S into itself.The phase space of(S(L),f)is a digraph whose vertex set is S(L)and there is an arc fr...A finite dynamical system(FDS)over a lattice L is a pair(S(L),f),where S(L)is a left-L module and f is a mapping from S into itself.The phase space of(S(L),f)is a digraph whose vertex set is S(L)and there is an arc from x to y if y=f(x).Let L be a finite distributive lattice,A an n×n matrix over L,and f(x)=Ax.The structure of the phase space of the FDS(Ln,f)is discussed.The number of limit cycles in the phase space of(Ln,f)is described in Möbius function.The phase spaces of some invertible,nilpotent,and idempotent FDS(Ln,f)are characterized explicitly.展开更多
This paper discusses not a point of equilibrium to free system,but a certain family of equilibrium state of dynami- cal system with inputs.This equilibrium state depends on the input,so it is called the dynamic equili...This paper discusses not a point of equilibrium to free system,but a certain family of equilibrium state of dynami- cal system with inputs.This equilibrium state depends on the input,so it is called the dynamic equilibrium state.The expression of the dynamic equilibrium state can be given under some certain condition.With deductions and proofs in linear control system,es- tablish the expression of the dynamic equilibrium state in two cases,where the linear systems are nonsingular or singular.Also pre- sent the concept and the condition of the controllability of the dynamic equilibrium state.The controllability of the dynamic equilib- rium state is different from the controllability of the state to system,but these two are closely related.展开更多
Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily...Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily used for the design of a linear system with unknown inputs under some conditions. Even when these conditions are not satisfied, the lower order dynamical compensator can also be designed under some relaxed conditions. Some examples illustrate that the method is neat, simple and effective.展开更多
This paper applied the theory and method of non linear dynamic to study the integrated environ economic system( EES ). The results of the numerical computational experiment and theoretical inductions showed that the...This paper applied the theory and method of non linear dynamic to study the integrated environ economic system( EES ). The results of the numerical computational experiment and theoretical inductions showed that the system behaviour pattern of the EES will be changed with the variation of the force power level. When the force DP become higher, the system loss its stability gradually, until the chaos occurs. Based on these results, this paper presented an explanation for the long wave economic fluctuation, and proposed in order to guarantee the sustainable development of the specific EES, the DP value of the system should be limited within a reasonable range.展开更多
We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic sta...We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.展开更多
As a key part of the diagnosis system in the International Thermonuclear Experimental Reactor(ITER),the neutron flux monitor(NFM),which measures the neutron intensity of the fusion reaction,is a Counting-Campbelling s...As a key part of the diagnosis system in the International Thermonuclear Experimental Reactor(ITER),the neutron flux monitor(NFM),which measures the neutron intensity of the fusion reaction,is a Counting-Campbelling system with a large dynamic counting range.A dynamic linear calibration method is proposed in this paper to solve the problem of cross-over between the different counting and Campbelling channels,and improve the accuracy of the cross-calibration for long-term operation.The experimental results show that the NFM system with the dynamic linear calibration system can obtain the neutron flux of the fusion reactor in real time and realize the seamless measurement area connection between the two channels.展开更多
Consider the linear dynamic equation on time scales (1) where , ,?is a rd-continuous function, T is a time scales. In this paper, we shall investigate some results for the exponential stability of the dynamic Equation...Consider the linear dynamic equation on time scales (1) where , ,?is a rd-continuous function, T is a time scales. In this paper, we shall investigate some results for the exponential stability of the dynamic Equation (1) by combinating the first approximate method and the second method of Lyapunov.展开更多
The use of functions, expressible in terms of Lucas polynomials of the second kind, allows us to write down the solution of linear dynamical systems—both in the discrete and continuous case—avoiding the Jordan...The use of functions, expressible in terms of Lucas polynomials of the second kind, allows us to write down the solution of linear dynamical systems—both in the discrete and continuous case—avoiding the Jordan canonical form of involved matrices. This improves the computational complexity of the algorithms used in literature.展开更多
Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was poin...Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.展开更多
Dynamic characteristic is presented by identifying the model and the dynamic parameters of a precise long stroke linear motor (PLSLM) with the air-bearing in optical lithography. The PLSLM is supported by air-bearin...Dynamic characteristic is presented by identifying the model and the dynamic parameters of a precise long stroke linear motor (PLSLM) with the air-bearing in optical lithography. The PLSLM is supported by air-bearing on the stator, and is driven by on-board two large linear motors in a cross-configuration. Firstly, a model of the PLSLM is established by finite element method (FEM). Secondly, based on the model, the natural frequencies and model shapes are discusse& And the contribution of each active mode is evaluated by computing the modal participation factors (MPF), which indicates the major vibration direction. Furthermore, by the experimental modal analysis, the experimental results are in agreement with simulation results, which it is sure that the FEM is reasonable. What's more, comparing with the effects on the frequency due to the air-bearing stiffness, the relations of the natural frequencies with the air-bearing stiffness are found. It is found that the frequency response curve is fluctuant with the air-bearing stiffness in each direction. Finally, it is conclusion that the natural frequency of the PLSLM is largely affected by the air-bearing stiffness variety. This research is contributed to the dynamic characteristics resulted from the air-beating stiffness. Further work will include better optimization on the dynamic parameter in the controller design through the control algorithm for the precise long stroke motor.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea (38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical...The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea (38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical model forecasts. Numerical model forecasts and observations are used as input values of the DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecasts with RMSE and bias, the DLM is useful to improve the accuracy of prediction.展开更多
A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle wa...A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.展开更多
Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system....Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.展开更多
文摘In this paper, adaptive linear quadratic regulator(LQR) is proposed for continuous-time systems with uncertain dynamics. The dynamic state-feedback controller uses inputoutput data along the system trajectory to continuously adapt and converge to the optimal controller. The result differs from previous results in that the adaptive optimal controller is designed without the knowledge of the system dynamics and an initial stabilizing policy. Further, the controller is updated continuously using input-output data, as opposed to the commonly used switched/intermittent updates which can potentially lead to stability issues. An online state derivative estimator facilitates the design of a model-free controller. Gradient-based update laws are developed for online estimation of the optimal gain. Uniform exponential stability of the closed-loop system is established using the Lyapunov-based analysis, and a simulation example is provided to validate the theoretical contribution.
基金supported by the Fundamental Research Funds for the Central Universities(DUT22RT(3)090)the National Natural Science Foundation of China(61890920,61890921,62122016,08120003)Liaoning Science and Technology Program(2023JH2/101700361).
文摘Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.
基金Supported by the China Scholarship Council,National Natural Science Foundation of China(Grant No.11402022)the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office(DYSCO)+1 种基金the Fund for Scientific Research–Flanders(FWO)the Research Fund KU Leuven
文摘The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
基金National Natural Science Foundation of China(Nos.11671258 and 11371086)。
文摘A finite dynamical system(FDS)over a lattice L is a pair(S(L),f),where S(L)is a left-L module and f is a mapping from S into itself.The phase space of(S(L),f)is a digraph whose vertex set is S(L)and there is an arc from x to y if y=f(x).Let L be a finite distributive lattice,A an n×n matrix over L,and f(x)=Ax.The structure of the phase space of the FDS(Ln,f)is discussed.The number of limit cycles in the phase space of(Ln,f)is described in Möbius function.The phase spaces of some invertible,nilpotent,and idempotent FDS(Ln,f)are characterized explicitly.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (60934003, 61074065), Key Project for Natural Science Research of Hebei Education Department (ZD200908), and the Doctor Foundation of Northeastern University at Qinhuangdao(XNB201507)
基金Supported by the National Science Foundation of China(60274056)
文摘This paper discusses not a point of equilibrium to free system,but a certain family of equilibrium state of dynami- cal system with inputs.This equilibrium state depends on the input,so it is called the dynamic equilibrium state.The expression of the dynamic equilibrium state can be given under some certain condition.With deductions and proofs in linear control system,es- tablish the expression of the dynamic equilibrium state in two cases,where the linear systems are nonsingular or singular.Also pre- sent the concept and the condition of the controllability of the dynamic equilibrium state.The controllability of the dynamic equilib- rium state is different from the controllability of the state to system,but these two are closely related.
文摘Presents a systematic design method of reduced order dynamical compensator via the parametric representations of eigenstructure assignment for linear system, which provides maximum degree of freedom, and can be easily used for the design of a linear system with unknown inputs under some conditions. Even when these conditions are not satisfied, the lower order dynamical compensator can also be designed under some relaxed conditions. Some examples illustrate that the method is neat, simple and effective.
文摘This paper applied the theory and method of non linear dynamic to study the integrated environ economic system( EES ). The results of the numerical computational experiment and theoretical inductions showed that the system behaviour pattern of the EES will be changed with the variation of the force power level. When the force DP become higher, the system loss its stability gradually, until the chaos occurs. Based on these results, this paper presented an explanation for the long wave economic fluctuation, and proposed in order to guarantee the sustainable development of the specific EES, the DP value of the system should be limited within a reasonable range.
基金Project supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (Grant No.2010-0009373)
文摘We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.
基金Supported by National Natural Science Foundation of China (61273137, 51209026, 61074017), the Scientific Research Fund of Liaoning Provincial Education Department (L2013202), and the Fundamental Research Funds for the Central Universities (3132013037, 3132014047, 3132014321)
基金Supported by ITER Plan National Major Project(No.2008GB109000)
文摘As a key part of the diagnosis system in the International Thermonuclear Experimental Reactor(ITER),the neutron flux monitor(NFM),which measures the neutron intensity of the fusion reaction,is a Counting-Campbelling system with a large dynamic counting range.A dynamic linear calibration method is proposed in this paper to solve the problem of cross-over between the different counting and Campbelling channels,and improve the accuracy of the cross-calibration for long-term operation.The experimental results show that the NFM system with the dynamic linear calibration system can obtain the neutron flux of the fusion reactor in real time and realize the seamless measurement area connection between the two channels.
文摘Consider the linear dynamic equation on time scales (1) where , ,?is a rd-continuous function, T is a time scales. In this paper, we shall investigate some results for the exponential stability of the dynamic Equation (1) by combinating the first approximate method and the second method of Lyapunov.
文摘The use of functions, expressible in terms of Lucas polynomials of the second kind, allows us to write down the solution of linear dynamical systems—both in the discrete and continuous case—avoiding the Jordan canonical form of involved matrices. This improves the computational complexity of the algorithms used in literature.
文摘Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.
基金National Basic Research Program of China (973 Program,No.2003CB716206)National Natural Science Foundation of China (No.50605025)
文摘Dynamic characteristic is presented by identifying the model and the dynamic parameters of a precise long stroke linear motor (PLSLM) with the air-bearing in optical lithography. The PLSLM is supported by air-bearing on the stator, and is driven by on-board two large linear motors in a cross-configuration. Firstly, a model of the PLSLM is established by finite element method (FEM). Secondly, based on the model, the natural frequencies and model shapes are discusse& And the contribution of each active mode is evaluated by computing the modal participation factors (MPF), which indicates the major vibration direction. Furthermore, by the experimental modal analysis, the experimental results are in agreement with simulation results, which it is sure that the FEM is reasonable. What's more, comparing with the effects on the frequency due to the air-bearing stiffness, the relations of the natural frequencies with the air-bearing stiffness are found. It is found that the frequency response curve is fluctuant with the air-bearing stiffness in each direction. Finally, it is conclusion that the natural frequency of the PLSLM is largely affected by the air-bearing stiffness variety. This research is contributed to the dynamic characteristics resulted from the air-beating stiffness. Further work will include better optimization on the dynamic parameter in the controller design through the control algorithm for the precise long stroke motor.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
文摘The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea (38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical model forecasts. Numerical model forecasts and observations are used as input values of the DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecasts with RMSE and bias, the DLM is useful to improve the accuracy of prediction.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject(50921001) supported by the Innovative Research Group Science Foundation,ChinaProject supported by Jiangsu Scientific Researching Fund Project ("333" Project),China
文摘A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.
文摘Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.