Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method ...A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.展开更多
Let K be a proper cone in R^x,let A be an n×n real matrix that satisfies AK(?)K,letb be a given vector of K,and let λbe a given positive real number.The following two lin-ear equations are considered in this pap...Let K be a proper cone in R^x,let A be an n×n real matrix that satisfies AK(?)K,letb be a given vector of K,and let λbe a given positive real number.The following two lin-ear equations are considered in this paper:(i)(λⅠ_n-A)x=b,x∈K,and(ii)(A-λⅠ_n)x=b,x∈K.We obtain several equivalent conditions for the solvability of the first equation.展开更多
Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equation...Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equations and the possibilistic linear programming problems and present an alternative method of solving the systems of fuzzy linear equations.展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the g...In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
Based on a new efficient identification technique of active constraints introduced in this paper, a new sequential systems of linear equations (SSLE) algorithm generating feasible iterates is proposed for solving no...Based on a new efficient identification technique of active constraints introduced in this paper, a new sequential systems of linear equations (SSLE) algorithm generating feasible iterates is proposed for solving nonlinear optimization problems with inequality constraints. In this paper, we introduce a new technique for constructing the system of linear equations, which recurs to a perturbation for the gradients of the constraint functions. At each iteration of the new algorithm, a feasible descent direction is obtained by solving only one system of linear equations without doing convex combination. To ensure the global convergence and avoid the Maratos effect, the algorithm needs to solve two additional reduced systems of linear equations with the same coefficient matrix after finite iterations. The proposed algorithm is proved to be globally and superlinearly convergent under some mild conditions. What distinguishes this algorithm from the previous feasible SSLE algorithms is that an improving direction is obtained easily and the computation cost of generating a new iterate is reduced. Finally, a preliminary implementation has been tested.展开更多
We present a class of asymptotically optimal successive overrelaxation methods for solving the large sparse system of linear equations. Numerical computations show that these new methods are more efficient and robust ...We present a class of asymptotically optimal successive overrelaxation methods for solving the large sparse system of linear equations. Numerical computations show that these new methods are more efficient and robust than the classical successive overrelaxation method.展开更多
In this paper,we study the multivariate linear equations with arbitrary positive integral coefficients.Under the Generalized Riemann Hypothesis,we obtained the asymptotic formula for the linear equations with more tha...In this paper,we study the multivariate linear equations with arbitrary positive integral coefficients.Under the Generalized Riemann Hypothesis,we obtained the asymptotic formula for the linear equations with more than five prime variables.This asymptotic formula is composed of three parts,that is,the first main term,the explicit second main term and the error term.Among them,the first main term is similar with the former one,the explicit second main term is relative to the non-trivial zeros of Dirichlet L-functions,and our error term improves the former one.展开更多
Presents information on a study which proposed a superlinearly convergent algorithm of sequential systems of linear equations or nonlinear optimization problems with inequality constraints. Assumptions; Discussion on ...Presents information on a study which proposed a superlinearly convergent algorithm of sequential systems of linear equations or nonlinear optimization problems with inequality constraints. Assumptions; Discussion on lemmas about several matrices related to the common coefficient matrix F; Strengthening of the regularity assumptions on the functions involved; Numerical experiments.展开更多
In this paper, we consider solving dense linear equations on Dawning1000 byusing matrix partitioning technique. Based on this partitioning of matrix, we give aparallel block LU decomposition method. The efficiency of ...In this paper, we consider solving dense linear equations on Dawning1000 byusing matrix partitioning technique. Based on this partitioning of matrix, we give aparallel block LU decomposition method. The efficiency of solving linear equationsby different ways is analysed. The numerical results are given on Dawning1000.By running our parallel program, the best speed up on 32 processors is over 25.展开更多
In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the o...In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.展开更多
In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar ...In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.展开更多
Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterativ...Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order...In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.展开更多
Based on linear interval equations, an accurate interval finite element method for solving structural static problems with uncertain parameters in terms of optimization is discussed. On the premise of ensuring the con...Based on linear interval equations, an accurate interval finite element method for solving structural static problems with uncertain parameters in terms of optimization is discussed. On the premise of ensuring the consistency of solution sets, the original interval equations are equivalently transformed into some deterministic inequations. On this basis, calculating the structural displacement response with interval parameters is predigested to a number of deterministic linear optimization problems. The results are proved to be accurate to the interval governing equations. Finally, a numerical example is given to demonstrate the feasibility and efficiency of the proposed method.展开更多
In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,...In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,t)+h(x,t)u^p(x,t)=0(p 〉 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146).展开更多
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.
基金Project supported by the National Natural Science Foundation of China (Nos. 10232040, 10572002 and 10572003)
文摘A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.
文摘Let K be a proper cone in R^x,let A be an n×n real matrix that satisfies AK(?)K,letb be a given vector of K,and let λbe a given positive real number.The following two lin-ear equations are considered in this paper:(i)(λⅠ_n-A)x=b,x∈K,and(ii)(A-λⅠ_n)x=b,x∈K.We obtain several equivalent conditions for the solvability of the first equation.
文摘Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equations and the possibilistic linear programming problems and present an alternative method of solving the systems of fuzzy linear equations.
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
基金supported by the Simons Foundation:Collaboration Grantssupported by the AFOSR grant FA9550-18-1-0383.
文摘In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金Supported by National Natural Science Foundation of China (Grant No. 10771040)Guangxi Science Foundation (Grant No. 0832052)Guangxi University for Nationalities Youth Foundation (Grant No. 2007QN24)
文摘Based on a new efficient identification technique of active constraints introduced in this paper, a new sequential systems of linear equations (SSLE) algorithm generating feasible iterates is proposed for solving nonlinear optimization problems with inequality constraints. In this paper, we introduce a new technique for constructing the system of linear equations, which recurs to a perturbation for the gradients of the constraint functions. At each iteration of the new algorithm, a feasible descent direction is obtained by solving only one system of linear equations without doing convex combination. To ensure the global convergence and avoid the Maratos effect, the algorithm needs to solve two additional reduced systems of linear equations with the same coefficient matrix after finite iterations. The proposed algorithm is proved to be globally and superlinearly convergent under some mild conditions. What distinguishes this algorithm from the previous feasible SSLE algorithms is that an improving direction is obtained easily and the computation cost of generating a new iterate is reduced. Finally, a preliminary implementation has been tested.
基金Subsidized by the Special Funds For Major State Basic Research Project G1999032803.
文摘We present a class of asymptotically optimal successive overrelaxation methods for solving the large sparse system of linear equations. Numerical computations show that these new methods are more efficient and robust than the classical successive overrelaxation method.
文摘In this paper,we study the multivariate linear equations with arbitrary positive integral coefficients.Under the Generalized Riemann Hypothesis,we obtained the asymptotic formula for the linear equations with more than five prime variables.This asymptotic formula is composed of three parts,that is,the first main term,the explicit second main term and the error term.Among them,the first main term is similar with the former one,the explicit second main term is relative to the non-trivial zeros of Dirichlet L-functions,and our error term improves the former one.
基金This research was supported by the National Natural Science Foundation of China(19571001, 19971002, 79970014) Cross-century Excellent Personnel Award and Teaching and Research Award Program for Outstanding Young Teachers in High Education Ministry o
文摘Presents information on a study which proposed a superlinearly convergent algorithm of sequential systems of linear equations or nonlinear optimization problems with inequality constraints. Assumptions; Discussion on lemmas about several matrices related to the common coefficient matrix F; Strengthening of the regularity assumptions on the functions involved; Numerical experiments.
文摘In this paper, we consider solving dense linear equations on Dawning1000 byusing matrix partitioning technique. Based on this partitioning of matrix, we give aparallel block LU decomposition method. The efficiency of solving linear equationsby different ways is analysed. The numerical results are given on Dawning1000.By running our parallel program, the best speed up on 32 processors is over 25.
基金supported by the National Natural Science Foundation of China (11171119 and 10871076)
文摘In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.
基金the National Natural Science Foundation of China(10161006,10571044)the Natural Science Foundation of Guangdong Prov(06025059)
文摘In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.
基金Supported by the National Natural Science Foundation of China(61272300)
文摘Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
文摘In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.
基金supported by the National Natural Science Foundation of China(Nos.90816024,10872017,and 10876100)the Defense Industrial Technology Development Program(Nos.A2120110001 and 2120110011)the 111 Project(No.B07009)
文摘Based on linear interval equations, an accurate interval finite element method for solving structural static problems with uncertain parameters in terms of optimization is discussed. On the premise of ensuring the consistency of solution sets, the original interval equations are equivalently transformed into some deterministic inequations. On this basis, calculating the structural displacement response with interval parameters is predigested to a number of deterministic linear optimization problems. The results are proved to be accurate to the interval governing equations. Finally, a numerical example is given to demonstrate the feasibility and efficiency of the proposed method.
基金supported by the National Science Foundation of China(41275063 and 11401575)
文摘In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,t)+h(x,t)u^p(x,t)=0(p 〉 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146).