期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Facial Feature Extraction Method Based on Coefficients of Variances 被引量:1
1
作者 宋枫溪 张大鹏 +1 位作者 陈才扣 杨静宇 《Journal of Computer Science & Technology》 SCIE EI CSCD 2007年第4期626-632,共7页
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are two popular feature extraction techniques in statistical pattern recognition field. Due to small sample size problem LDA cannot be dire... Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are two popular feature extraction techniques in statistical pattern recognition field. Due to small sample size problem LDA cannot be directly applied to appearance-based face recognition tasks. As a consequence, a lot of LDA-based facial feature extraction techniques are proposed to deal with the problem one after the other. Nullspace Method is one of the most effective methods among them. The Nullspace Method tries to find a set of discriminant vectors which maximize the between-class scatter in the null space of the within-class scatter matrix. The calculation of its discriminant vectors will involve performing singular value decomposition on a high-dimensional matrix. It is generally memory- and time-consuming. Borrowing the key idea in Nullspace method and the concept of coefficient of variance in statistical analysis we present a novel facial feature extraction method, i.e., Discriminant based on Coefficient of Variance (DCV) in this paper. Experimental results performed on the FERET and AR face image databases demonstrate that DCV is a promising technique in comparison with Eigenfaces, Nullspace Method, and other state-of-the-art facial feature extraction methods. 展开更多
关键词 coefficient of variation face recognition null space Gram-Schmidt orthogonalizing procedure linear feature extraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部