A linear forest is a graph consisting of paths.In this paper,the authors determine the maximum number of edges in an(m,n)-bipartite graph which does not contain a linear forest consisting of paths on at least four ver...A linear forest is a graph consisting of paths.In this paper,the authors determine the maximum number of edges in an(m,n)-bipartite graph which does not contain a linear forest consisting of paths on at least four vertices for n≥m when m is sufficiently large.展开更多
Let F be a graph and H be a hypergraph.We say that H contains a Berge-F If there exists a bijectionψ:E(F)→E(H)such that for Ve E E(F),e C(e),and the Turan number of Berge-F is defined to be the maximum number of edg...Let F be a graph and H be a hypergraph.We say that H contains a Berge-F If there exists a bijectionψ:E(F)→E(H)such that for Ve E E(F),e C(e),and the Turan number of Berge-F is defined to be the maximum number of edges in an r-uniform hypergraph of order n that is Berge-F-free,denoted by ex,(n,Berge-F).A linear forest is a graph whose connected components are all paths or isolated vertices.Let Ln,k be the family of all linear forests of n vertices with k edges.In this paper,Turan number of Berge-Ln,in an r-uniform hypergraph is studied.When r≥k+1 and 3≤r≤l[]=1,we determine 2 the exact value of ex,(n,Berge-Ln,)respectively.When K-1≤r≤k,we 2 determine the upper bound of ex,(n,Berge-Ln,).展开更多
The k-ary n-cube Qkn (n ≥2 and k ≥3) is one of the most popular interconnection networks. In this paper, we consider the problem of a fault- free Hamiltonian cycle passing through a prescribed linear forest (i.e....The k-ary n-cube Qkn (n ≥2 and k ≥3) is one of the most popular interconnection networks. In this paper, we consider the problem of a fault- free Hamiltonian cycle passing through a prescribed linear forest (i.e., pairwise vertex-disjoint paths) in the 3-ary n-cube Qn^3 with faulty edges. The following result is obtained. Let E0 (≠θ) be a linear forest and F (≠θ) be a set of faulty edges in Q3 such that E0∩ F = 0 and |E0| +|F| ≤ 2n - 2. Then all edges of E0 lie on a Hamiltonian cycle in Qn^3- F, and the upper bound 2n - 2 is sharp.展开更多
A (p, q)-graph G is called super edge-magic if there exists a bijective function f : V(G) U E(G) →{1, 2 p+q} such that f(u)+ f(v)+f(uv) is a constant for each uv C E(G) and f(Y(G)) = {1,2,...,p}...A (p, q)-graph G is called super edge-magic if there exists a bijective function f : V(G) U E(G) →{1, 2 p+q} such that f(u)+ f(v)+f(uv) is a constant for each uv C E(G) and f(Y(G)) = {1,2,...,p}. In this paper, we introduce the concept of strong super edge-magic labeling as a particular class of super edge-magic labelings and we use such labelings in order to show that the number of super edge-magic labelings of an odd union of path-like trees (mT), all of them of the same order, grows at least exponentially with m.展开更多
It is a well known fact that the linear arboricity of a k-regular graph is [(k+1)/2] fork=3,4. In this paper, we prove that if the number Of edges of a k-regular circulant is divisibleby [(k+1)/2], then its edge set c...It is a well known fact that the linear arboricity of a k-regular graph is [(k+1)/2] fork=3,4. In this paper, we prove that if the number Of edges of a k-regular circulant is divisibleby [(k+1)/2], then its edge set can be partitioned into [(k+1)/2] isomorphic linear forests, fork=3,4.展开更多
For a fixed graph F,a graph G is F-saturated if it has no F as a subgraph,but does contain F after the addition of any new edge.The saturation number,sat(n,F),is the minimum number of edges of a graph in the set of al...For a fixed graph F,a graph G is F-saturated if it has no F as a subgraph,but does contain F after the addition of any new edge.The saturation number,sat(n,F),is the minimum number of edges of a graph in the set of all F-saturated graphs with order n.In this paper,we determine the saturation number sat(n,2P3∪tP2)and characterize the extremal graphs for n≥6t+8.展开更多
A linear forest is a forest whose components are paths. The linear arboricity la (G) of a graph G is the minimum number of linear forests which partition the edge set E(G) of G. The Cartesian product G□H of two g...A linear forest is a forest whose components are paths. The linear arboricity la (G) of a graph G is the minimum number of linear forests which partition the edge set E(G) of G. The Cartesian product G□H of two graphs G and H is defined as the graph with vertex set V(G□H) = {(u, v)| u ∈V(G), v∈V(H) } and edge set E(G□H) = { ( u, x) ( v, Y)|u=v and xy∈E(H), or uv∈E(G) and x=y}. Let Pm and Cm,, respectively, denote the path and cycle on m vertices and K, denote the complete graph on n vertices. It is proved that (Km□Pm)=[n+1/2]for m≥2,la(Km□Cm)=[n+2/2],and la(Km□Km)=[n+m-1/2]. The methods to decompose these graphs into linear forests are given in the proofs. Furthermore, the linear arboricity conjecture is true for these classes of graphs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12125106,12271169,12331014)National Key R and D Program of China(No.2020YFA0713100)+1 种基金Anhui Initiative in Quantum Information Technologies(No.AHY150200)Science and Technology Commission of Shanghai Municipality(No.22DZ2229014)。
文摘A linear forest is a graph consisting of paths.In this paper,the authors determine the maximum number of edges in an(m,n)-bipartite graph which does not contain a linear forest consisting of paths on at least four vertices for n≥m when m is sufficiently large.
文摘Let F be a graph and H be a hypergraph.We say that H contains a Berge-F If there exists a bijectionψ:E(F)→E(H)such that for Ve E E(F),e C(e),and the Turan number of Berge-F is defined to be the maximum number of edges in an r-uniform hypergraph of order n that is Berge-F-free,denoted by ex,(n,Berge-F).A linear forest is a graph whose connected components are all paths or isolated vertices.Let Ln,k be the family of all linear forests of n vertices with k edges.In this paper,Turan number of Berge-Ln,in an r-uniform hypergraph is studied.When r≥k+1 and 3≤r≤l[]=1,we determine 2 the exact value of ex,(n,Berge-Ln,)respectively.When K-1≤r≤k,we 2 determine the upper bound of ex,(n,Berge-Ln,).
基金Acknowledgements The author would like to thank the anonymous referees for their valuable suggestions. This work was supported by the Natural Science Foundation of Fujian Province (No. 2011J01025).
文摘The k-ary n-cube Qkn (n ≥2 and k ≥3) is one of the most popular interconnection networks. In this paper, we consider the problem of a fault- free Hamiltonian cycle passing through a prescribed linear forest (i.e., pairwise vertex-disjoint paths) in the 3-ary n-cube Qn^3 with faulty edges. The following result is obtained. Let E0 (≠θ) be a linear forest and F (≠θ) be a set of faulty edges in Q3 such that E0∩ F = 0 and |E0| +|F| ≤ 2n - 2. Then all edges of E0 lie on a Hamiltonian cycle in Qn^3- F, and the upper bound 2n - 2 is sharp.
基金Supported by the Slovak VEGA (Grant No.1/4005/07)Spanish Research Council (Grant No.BFM2002-00412)
文摘A (p, q)-graph G is called super edge-magic if there exists a bijective function f : V(G) U E(G) →{1, 2 p+q} such that f(u)+ f(v)+f(uv) is a constant for each uv C E(G) and f(Y(G)) = {1,2,...,p}. In this paper, we introduce the concept of strong super edge-magic labeling as a particular class of super edge-magic labelings and we use such labelings in order to show that the number of super edge-magic labelings of an odd union of path-like trees (mT), all of them of the same order, grows at least exponentially with m.
文摘It is a well known fact that the linear arboricity of a k-regular graph is [(k+1)/2] fork=3,4. In this paper, we prove that if the number Of edges of a k-regular circulant is divisibleby [(k+1)/2], then its edge set can be partitioned into [(k+1)/2] isomorphic linear forests, fork=3,4.
基金Supported by the National Natural Science Foundation of China(11071096,11171129)the Natural Science Foundation of Hubei Province(2016CFB146)Research Foundation of College of Economics,Northwest University of Political Science and Law(19XYKY07)
文摘For a fixed graph F,a graph G is F-saturated if it has no F as a subgraph,but does contain F after the addition of any new edge.The saturation number,sat(n,F),is the minimum number of edges of a graph in the set of all F-saturated graphs with order n.In this paper,we determine the saturation number sat(n,2P3∪tP2)and characterize the extremal graphs for n≥6t+8.
基金The National Natural Science Foundation of China(No.10971025)
文摘A linear forest is a forest whose components are paths. The linear arboricity la (G) of a graph G is the minimum number of linear forests which partition the edge set E(G) of G. The Cartesian product G□H of two graphs G and H is defined as the graph with vertex set V(G□H) = {(u, v)| u ∈V(G), v∈V(H) } and edge set E(G□H) = { ( u, x) ( v, Y)|u=v and xy∈E(H), or uv∈E(G) and x=y}. Let Pm and Cm,, respectively, denote the path and cycle on m vertices and K, denote the complete graph on n vertices. It is proved that (Km□Pm)=[n+1/2]for m≥2,la(Km□Cm)=[n+2/2],and la(Km□Km)=[n+m-1/2]. The methods to decompose these graphs into linear forests are given in the proofs. Furthermore, the linear arboricity conjecture is true for these classes of graphs.