High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this prob...High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.展开更多
This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution ar...This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.展开更多
The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analy...The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.展开更多
The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts high...The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.展开更多
In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we ...In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.展开更多
With noncritical eigenvalues assumed to be campletely controllable stability and linear feedback stabiliz-ablity probems are attacked by the center manifold method, and a procedure had been established for the constru...With noncritical eigenvalues assumed to be campletely controllable stability and linear feedback stabiliz-ablity probems are attacked by the center manifold method, and a procedure had been established for the construction of linear feedback stabilizing law on the basis of noncritical eigenvalue assignment.展开更多
LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理...LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理结果,实现增量处理.实验表明该算法是有效的.展开更多
基金Project(60835005) supported by the National Nature Science Foundation of China
文摘High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.
基金This work was supposed by the National Nature Science Foundation of China
文摘This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.
基金Hie-Tch Research and Development Program of China (2002AA723011)
文摘The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.
基金supported by the National Key R&D Program of China (Grant No.2018YFC0407002)the National Natural Science Foundation of China(Grant Nos.11502033 and 51879014)
文摘The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.
基金Supported by National Natural Science Foundation of China(61071131,61271388) Natural Science Foundation of Beijing(4122040)+1 种基金 Research Project of Tsinghua University(2012Z01011) Doctoral Fund of Ministry of Education of China(20120002110036)
文摘In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.
文摘With noncritical eigenvalues assumed to be campletely controllable stability and linear feedback stabiliz-ablity probems are attacked by the center manifold method, and a procedure had been established for the construction of linear feedback stabilizing law on the basis of noncritical eigenvalue assignment.
文摘LLE(Locally Linear Embedding)算法是一种较好的流形学习算法,但它只能以批处理的方式进行.只要有新的样本加入,就必须重作该算法的全部内容,而原处理结果被全部丢弃.本文提出了一种基于正交迭代的增量LLE算法,能有效地利用前面的处理结果,实现增量处理.实验表明该算法是有效的.