The symbolic dynamics of a Belykh-type map (a two-dimensional discon- tinuous piecewise linear map) is investigated. The admissibility condition for symbol sequences named the pruning front conjecture is proved unde...The symbolic dynamics of a Belykh-type map (a two-dimensional discon- tinuous piecewise linear map) is investigated. The admissibility condition for symbol sequences named the pruning front conjecture is proved under a hyperbolicity condition. Using this result, a symbolic dynamics model of the map is constructed according to its pruning front and primary pruned region. Moreover, the boundary of the parameter region in which the map is chaotic of a horseshoe type is given.展开更多
In this paper, we discuss a class of piecewise linear hyperbolic maps on the 2-torus. These maps arise in the second-order digital fdter with two' s complement arithmetic. By introducing codings underlying the map op...In this paper, we discuss a class of piecewise linear hyperbolic maps on the 2-torus. These maps arise in the second-order digital fdter with two' s complement arithmetic. By introducing codings underlying the map operations, we give some admissibility conditions for symbolic sequences and find some periodic properties of these symbolic sequences. Then we use these conditions to check the admissibility of periodic symbol sequences.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11172246 and 11572263)
文摘The symbolic dynamics of a Belykh-type map (a two-dimensional discon- tinuous piecewise linear map) is investigated. The admissibility condition for symbol sequences named the pruning front conjecture is proved under a hyperbolicity condition. Using this result, a symbolic dynamics model of the map is constructed according to its pruning front and primary pruned region. Moreover, the boundary of the parameter region in which the map is chaotic of a horseshoe type is given.
基金Project supported by National Natural Science Foundation of Chi-na (Grant No .10471087) ,and Shanghai Municipal Commission ofEducation (Grant No .03AK33)
文摘In this paper, we discuss a class of piecewise linear hyperbolic maps on the 2-torus. These maps arise in the second-order digital fdter with two' s complement arithmetic. By introducing codings underlying the map operations, we give some admissibility conditions for symbolic sequences and find some periodic properties of these symbolic sequences. Then we use these conditions to check the admissibility of periodic symbol sequences.