In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire r...In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire range of the expected changes of the operating points.The original nonlinear system was described by linear combination of these multiple linearized models,with the linear combination parameters being identified on line based on least squares method.Model Predictive Control,an optimization based technique,was used to design the linear controller.A sufficient condition for ensuring the existence of a linear controller for the original nonlinear system was also given.Good performance indicated by two simulated examples confirms the usefulness of the proposed method.展开更多
PRETCO-A is a standardized English proficiency test set up to evaluate the English application ability of the students in higher vocational college.In order to improve the passing rate,a multiple linear regression pre...PRETCO-A is a standardized English proficiency test set up to evaluate the English application ability of the students in higher vocational college.In order to improve the passing rate,a multiple linear regression prediction model is constructed in this paper.A significance test was first performed on the regression model and the regression coefficient to verify a high correlation among the variables.The confirmed model was then put into application to predict the students’scores and identify the students who may fail the exam,leading to targeted tutoring assistance given to those students in advance.Finally,60 students with predicted scores lower than 60 points were selected as research samples,and randomly divided into the control group and the experimental group,30 students in each group.Finally,the experimental group students were given 40 teaching hours of precision assistance and targeted training,while the control group did not engage in any teaching intervention.The experimental results indicate that the pass rate of experimental group is 20%higher than the control group,which means the backwash effect of the test prediction is positive.The prediction model is proved to be scientific and reliable for teaching.展开更多
目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3...目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷、多酚、黄酮、类胡萝卜素等13个品质指标进行分析和综合评价。结果芙蓉李成熟期间,各品质指标的含量变化存在显著差异(P<0.05),综合运用相关分析、因子分析、绝对因子分析-多元线性回归(absolute principal component scores-multiple linear regression,APCS-MLR)分析筛选可反映芙蓉李综合品质的主要指标。因子分析提取出3个主因子,贡献率分别为52.677%、23.468%、11.649%,累计贡献率为87.794%。综合APCS-MLR等数理统计分析,主因子1主要对果糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷贡献较大,贡献率分别为53.00%、73.85%、55.54%;主因子2主要对蔗糖、富马酸、果糖、柠檬酸的贡献率较大,分别为28.26%、18.70%、16.14%、15.59%;主因子3主要对多酚(29.13%)和黄酮(28.28%)有较大贡献率;选取3个主因子总贡献率高于60%的果糖、葡萄糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷作为综合品质评价的主要指标。分别对已筛选出的4个主要评价指标与色度值进行多元线性逐步回归分析,建立4个主要指标与色度值的表观预测模型,各模型均具有较好的拟合度,预测值与实测值的均方根误差较小;进一步验证结果表明,通过色度值对4个指标的预测具有较高的可靠性和准确性。结论本研究筛选出的主要指标及预测模型可更加简单、便捷地评价芙蓉李果实成熟期间的综合品质。展开更多
This study aims to solve the problem of multi-missile simultaneous attacks on maneuvering target.The challenges include multimissile cooperative control and target's trajectory prediction.A controller based on non...This study aims to solve the problem of multi-missile simultaneous attacks on maneuvering target.The challenges include multimissile cooperative control and target's trajectory prediction.A controller based on nonlinear distributed model predictive control(NDMPC)is designed for multiple missiles against a maneuvering target,and a trajectory prediction inethod based on particle swarm optimization(PSO)algorithm is proposed.This study has mainly completed the following three aspects of work.Firstly,the cost function of the cont roller is constructed to optimize the accuracy and synchronization of the multi-missile system with consideration of collision avoidance.Secondly,the velocity control of the leading missile is designed by using the range-to-go in-formation in real time to ensure the attack fficiency and the control of the terminal velocity difference.Finally,a kinematic model of the target is cstimated by using short-term real-time data with the PSO algorithm.The established model is employed to predict the target trajectory in the interval between radar scans.Numerical simulation results of two different s enarios demonstrate the effectiveness of the proposed cooperative guidance approach.展开更多
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not...In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.展开更多
文摘In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire range of the expected changes of the operating points.The original nonlinear system was described by linear combination of these multiple linearized models,with the linear combination parameters being identified on line based on least squares method.Model Predictive Control,an optimization based technique,was used to design the linear controller.A sufficient condition for ensuring the existence of a linear controller for the original nonlinear system was also given.Good performance indicated by two simulated examples confirms the usefulness of the proposed method.
文摘PRETCO-A is a standardized English proficiency test set up to evaluate the English application ability of the students in higher vocational college.In order to improve the passing rate,a multiple linear regression prediction model is constructed in this paper.A significance test was first performed on the regression model and the regression coefficient to verify a high correlation among the variables.The confirmed model was then put into application to predict the students’scores and identify the students who may fail the exam,leading to targeted tutoring assistance given to those students in advance.Finally,60 students with predicted scores lower than 60 points were selected as research samples,and randomly divided into the control group and the experimental group,30 students in each group.Finally,the experimental group students were given 40 teaching hours of precision assistance and targeted training,while the control group did not engage in any teaching intervention.The experimental results indicate that the pass rate of experimental group is 20%higher than the control group,which means the backwash effect of the test prediction is positive.The prediction model is proved to be scientific and reliable for teaching.
文摘目的科学评价芙蓉李果实成熟期间的营养品质,建立色度值表观特征与营养品质的关系。方法以福建省主栽品种芙蓉李为研究对象,对其成熟期间果糖、葡萄糖、蔗糖、苹果酸、奎尼酸、琥珀酸、柠檬酸、富马酸、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷、多酚、黄酮、类胡萝卜素等13个品质指标进行分析和综合评价。结果芙蓉李成熟期间,各品质指标的含量变化存在显著差异(P<0.05),综合运用相关分析、因子分析、绝对因子分析-多元线性回归(absolute principal component scores-multiple linear regression,APCS-MLR)分析筛选可反映芙蓉李综合品质的主要指标。因子分析提取出3个主因子,贡献率分别为52.677%、23.468%、11.649%,累计贡献率为87.794%。综合APCS-MLR等数理统计分析,主因子1主要对果糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷贡献较大,贡献率分别为53.00%、73.85%、55.54%;主因子2主要对蔗糖、富马酸、果糖、柠檬酸的贡献率较大,分别为28.26%、18.70%、16.14%、15.59%;主因子3主要对多酚(29.13%)和黄酮(28.28%)有较大贡献率;选取3个主因子总贡献率高于60%的果糖、葡萄糖、矢车菊素-3-芸香糖苷、矢车菊素-3-葡萄糖苷作为综合品质评价的主要指标。分别对已筛选出的4个主要评价指标与色度值进行多元线性逐步回归分析,建立4个主要指标与色度值的表观预测模型,各模型均具有较好的拟合度,预测值与实测值的均方根误差较小;进一步验证结果表明,通过色度值对4个指标的预测具有较高的可靠性和准确性。结论本研究筛选出的主要指标及预测模型可更加简单、便捷地评价芙蓉李果实成熟期间的综合品质。
文摘This study aims to solve the problem of multi-missile simultaneous attacks on maneuvering target.The challenges include multimissile cooperative control and target's trajectory prediction.A controller based on nonlinear distributed model predictive control(NDMPC)is designed for multiple missiles against a maneuvering target,and a trajectory prediction inethod based on particle swarm optimization(PSO)algorithm is proposed.This study has mainly completed the following three aspects of work.Firstly,the cost function of the cont roller is constructed to optimize the accuracy and synchronization of the multi-missile system with consideration of collision avoidance.Secondly,the velocity control of the leading missile is designed by using the range-to-go in-formation in real time to ensure the attack fficiency and the control of the terminal velocity difference.Finally,a kinematic model of the target is cstimated by using short-term real-time data with the PSO algorithm.The established model is employed to predict the target trajectory in the interval between radar scans.Numerical simulation results of two different s enarios demonstrate the effectiveness of the proposed cooperative guidance approach.
文摘In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.