A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking ...A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H_∞ robustness controller suppresses the disturbances well within the close loop(including the load and the end effect force of linear motor etc.) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.展开更多
A novel adaptive robust control (ARC) is presented for the four-motor driving servo systems with the uncertain nonlinearities and actuation failures, such that the load tracking control is achieved with the proximat...A novel adaptive robust control (ARC) is presented for the four-motor driving servo systems with the uncertain nonlinearities and actuation failures, such that the load tracking control is achieved with the proximate optimal-time. By applying the proposed scheme, several control objectives are achieved. First, the nonlinear synchronization algorithm is presented to maintain the velocity synchronization of each motor, which provides fast convergence without chatting. Moreover, the time-varying bias torque is applied to eliminate the effect of backlash and reduce the waste of energy. Then, the ARC is designed to achieve the proximate optimal-time output tracking with the transient performance in L2 norm, where the friction and actuation failures are addressed by the adaptive scheme based on the norm estimation of unknown parameter vector. Finally, the extensive simulated and experimental results validate the effectiveness of the proposed method.展开更多
Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo...Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo system. The controller design requires no information about the structure of linear servo system, and it is based on the estimation and forecasting of the pseudo-partial derivatives(PPD) which are estimated according to the voltage input and position output of the linear motor. The characteristics and operational mechanism of the permanent magnet synchronous linear motor(PMSLM) are introduced, and the proposed nonparametric model control strategy has been compared with the classic proportional-integral-derivative(PID) control algorithm. Several real-time experiments on the motion control system incorporating a permanent magnet synchronous linear motor showed that the nonparametric model adaptive control method improved the system s response to disturbances and its position-tracking precision, even for a nonlinear system with incompletely known dynamic characteristics.展开更多
The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented...A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented based on our previous research. The entire press control system is constructed to realize various flexible forming processes. The control system scheme is determined in accordance with the mathematical model of PPMLM, and active disturbance rejection control is implemented in the servo controller. Field-circuit coupling simulation is applied to estimate the system’s performance. Then, a press prototype with 6 kN nominal force is fabricated, and the hardware platform of the control system is constructed for experimental study. Punch strokes with 0.06 m displacement are implemented at trapezoidal speeds of 0.1 and 0.2 m/s;the dynamic position tracking errors are less than 0.45 and 0.82 mm, respectively. Afterward, continuous reciprocating strokes are performed, and the positioning errors at the bottom dead center are less than 0.015 mm. Complex pulse trajectories are also achieved. The proposed PPMLM drive press exhibits a fast dynamic response and favorable tracking precision and is suitable for various forming processes.展开更多
This paper describes a system designed for linear servo cart systems that employs an integral-based Linear Active Disturbance Rejection Control(ILADRC)scheme to detect and respond to disturbances.The upgrade in this c...This paper describes a system designed for linear servo cart systems that employs an integral-based Linear Active Disturbance Rejection Control(ILADRC)scheme to detect and respond to disturbances.The upgrade in this control technique provides extensive immunity to uncertainties,attenuation,internal disturbances,and external sources of noise.The fundamental technology base of LADRC is Extended State Observer(ESO).LADRC,when combined with Integral action,becomes a hybrid control technique,namely ILADRC.Setpoint tracking is based on Bode’s Ideal Transfer Function(BITF)in this proposed ILADRC technique.This proves to be a very robust and appropriate pole placement scheme.The proposed LSC system has experimented with the hybrid ILADRC technique plotted the results.From the results,it is evident that the proposed ILADRC scheme enhances the robustness of the LSC system with remarkable disturbance rejection.Furthermore,the results of a linear quadratic regulator(LQR)and ILADRC schemes are comparatively analyzed.This analysis deduced the improved performance of ILADRC over the LQR control scheme.展开更多
The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In o...The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.展开更多
文摘A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H_∞ robustness controller suppresses the disturbances well within the close loop(including the load and the end effect force of linear motor etc.) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61433003, 61273150), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61321002) and the Doctoral Program of Higher Education of China (No. 20121101110029).
文摘A novel adaptive robust control (ARC) is presented for the four-motor driving servo systems with the uncertain nonlinearities and actuation failures, such that the load tracking control is achieved with the proximate optimal-time. By applying the proposed scheme, several control objectives are achieved. First, the nonlinear synchronization algorithm is presented to maintain the velocity synchronization of each motor, which provides fast convergence without chatting. Moreover, the time-varying bias torque is applied to eliminate the effect of backlash and reduce the waste of energy. Then, the ARC is designed to achieve the proximate optimal-time output tracking with the transient performance in L2 norm, where the friction and actuation failures are addressed by the adaptive scheme based on the norm estimation of unknown parameter vector. Finally, the extensive simulated and experimental results validate the effectiveness of the proposed method.
基金supported by Beijing Natural Science Foundation(No.4142017)International Cooperation Project of National Natural Science Foundation of China(No.61120106009)Beijing Science and Technology Commission Precision Machinery Projects(No.Z121100001612007)
文摘Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo system. The controller design requires no information about the structure of linear servo system, and it is based on the estimation and forecasting of the pseudo-partial derivatives(PPD) which are estimated according to the voltage input and position output of the linear motor. The characteristics and operational mechanism of the permanent magnet synchronous linear motor(PMSLM) are introduced, and the proposed nonparametric model control strategy has been compared with the classic proportional-integral-derivative(PID) control algorithm. Several real-time experiments on the motion control system incorporating a permanent magnet synchronous linear motor showed that the nonparametric model adaptive control method improved the system s response to disturbances and its position-tracking precision, even for a nonlinear system with incompletely known dynamic characteristics.
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.
基金This research was financially supported by the National Natural Science Foundation of China(Grant No.51605363)China Postdoctoral Science Foundation(Grant No.2016M590922)Shaanxi Postdoctoral Research Project Funding.
文摘A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented based on our previous research. The entire press control system is constructed to realize various flexible forming processes. The control system scheme is determined in accordance with the mathematical model of PPMLM, and active disturbance rejection control is implemented in the servo controller. Field-circuit coupling simulation is applied to estimate the system’s performance. Then, a press prototype with 6 kN nominal force is fabricated, and the hardware platform of the control system is constructed for experimental study. Punch strokes with 0.06 m displacement are implemented at trapezoidal speeds of 0.1 and 0.2 m/s;the dynamic position tracking errors are less than 0.45 and 0.82 mm, respectively. Afterward, continuous reciprocating strokes are performed, and the positioning errors at the bottom dead center are less than 0.015 mm. Complex pulse trajectories are also achieved. The proposed PPMLM drive press exhibits a fast dynamic response and favorable tracking precision and is suitable for various forming processes.
基金This research work was funded by Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia under grant no(IFPRC-023-135-2020)。
文摘This paper describes a system designed for linear servo cart systems that employs an integral-based Linear Active Disturbance Rejection Control(ILADRC)scheme to detect and respond to disturbances.The upgrade in this control technique provides extensive immunity to uncertainties,attenuation,internal disturbances,and external sources of noise.The fundamental technology base of LADRC is Extended State Observer(ESO).LADRC,when combined with Integral action,becomes a hybrid control technique,namely ILADRC.Setpoint tracking is based on Bode’s Ideal Transfer Function(BITF)in this proposed ILADRC technique.This proves to be a very robust and appropriate pole placement scheme.The proposed LSC system has experimented with the hybrid ILADRC technique plotted the results.From the results,it is evident that the proposed ILADRC scheme enhances the robustness of the LSC system with remarkable disturbance rejection.Furthermore,the results of a linear quadratic regulator(LQR)and ILADRC schemes are comparatively analyzed.This analysis deduced the improved performance of ILADRC over the LQR control scheme.
基金Supported by National Natural Science Foundation of China(Grant No.51335009)Major National Science and Technology Project of China(Grant No.2011ZX04001-011)
文摘The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.