In this paper, the authors address the problem of the minimax estimator of linear combinations of stochastic regression coefficients and parameters in the general normal linear model with random effects. Under a quadr...In this paper, the authors address the problem of the minimax estimator of linear combinations of stochastic regression coefficients and parameters in the general normal linear model with random effects. Under a quadratic loss function, the minimax property of linear estimators is investigated. In the class of all estimators, the minimax estimator of estimable functions, which is unique with probability 1, is obtained under a multivariate normal distribution.展开更多
Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data au...Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data augmentation (DA) algorithm and a non-iterative inverse Bayes formulae (IBF) sampler, to simulate TMVND and generalize them to multivariate normal distributions with linear inequality constraints. By creating a Bayesian incomplete-data structure, the posterior step of the DA Mgorithm directly generates random vector draws as opposed to single element draws, resulting obvious computational advantage and easy coding with common statistical software packages such as S-PLUS, MATLAB and GAUSS. Furthermore, the DA provides a ready structure for implementing a fast EM algorithm to identify the mode of TMVND, which has many potential applications in statistical inference of constrained parameter problems. In addition, utilizing this mode as an intermediate result, the IBF sampling provides a novel alternative to Gibbs sampling and elimi- nares problems with convergence and possible slow convergence due to the high correlation between components of a TMVND. The DA algorithm is applied to a linear regression model with constrained parameters and is illustrated with a published data set. Numerical comparisons show that the proposed DA algorithm and IBF sampler are more efficient than the Gibbs sampler and the accept-reject algorithm.展开更多
基金the National Natural Science Foundation of China(10271010)the Natural Science Foundation of Beijing(1032001)
文摘In this paper, the authors address the problem of the minimax estimator of linear combinations of stochastic regression coefficients and parameters in the general normal linear model with random effects. Under a quadratic loss function, the minimax property of linear estimators is investigated. In the class of all estimators, the minimax estimator of estimable functions, which is unique with probability 1, is obtained under a multivariate normal distribution.
基金Supported by the National Social Science Foundation of China (No. 09BTJ012)Scientific Research Fund ofHunan Provincial Education Department (No. 09c390)+1 种基金supported in part by a HKUSeed Funding Program for Basic Research (Project No. 2009-1115-9042)a grant from Hong Kong ResearchGrant Council-General Research Fund (Project No. HKU779210M)
文摘Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data augmentation (DA) algorithm and a non-iterative inverse Bayes formulae (IBF) sampler, to simulate TMVND and generalize them to multivariate normal distributions with linear inequality constraints. By creating a Bayesian incomplete-data structure, the posterior step of the DA Mgorithm directly generates random vector draws as opposed to single element draws, resulting obvious computational advantage and easy coding with common statistical software packages such as S-PLUS, MATLAB and GAUSS. Furthermore, the DA provides a ready structure for implementing a fast EM algorithm to identify the mode of TMVND, which has many potential applications in statistical inference of constrained parameter problems. In addition, utilizing this mode as an intermediate result, the IBF sampling provides a novel alternative to Gibbs sampling and elimi- nares problems with convergence and possible slow convergence due to the high correlation between components of a TMVND. The DA algorithm is applied to a linear regression model with constrained parameters and is illustrated with a published data set. Numerical comparisons show that the proposed DA algorithm and IBF sampler are more efficient than the Gibbs sampler and the accept-reject algorithm.