期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mapping Soil Organic Carbon Stocks of Northeastern China Using Expert Knowledge and GIS-based Methods 被引量:2
1
作者 SONG Xiaodong LIU Feng +4 位作者 JU Bing ZHI Junjun LI Decheng ZHAO Yuguo ZHANG Ganlin 《Chinese Geographical Science》 SCIE CSCD 2017年第4期516-528,共13页
The main aim of this paper was to calculate soil organic carbon stock(SOCS) with consideration of the pedogenetic horizons using expert knowledge and GIS-based methods in northeastern China.A novel prediction process ... The main aim of this paper was to calculate soil organic carbon stock(SOCS) with consideration of the pedogenetic horizons using expert knowledge and GIS-based methods in northeastern China.A novel prediction process was presented and was referred to as model-then-calculate with respect to the variable thicknesses of soil horizons(MCV).The model-then-calculate with fixed-thickness(MCF),soil profile statistics(SPS),pedological professional knowledge-based(PKB) and vegetation type-based(Veg) methods were carried out for comparison.With respect to the similar pedological information,nine common layers from topsoil to bedrock were grouped in the MCV.Validation results suggested that the MCV method generated better performance than the other methods considered.For the comparison of polygon based approaches,the Veg method generated better accuracy than both SPS and PKB,as limited soil data were incorporated.Additional prediction of the pedogenetic horizons within MCV benefitted the regional SOCS estimation and provided information for future soil classification and understanding of soil functions.The intermediate product,that is,horizon thickness maps were fluctuant enough and reflected many details in space.The linear mixed model indicated that mean annual air temperature(MAAT) was the most important predictor for the SOCS simulation.The minimal residual of the linear mixed models was achieved in the vegetation type-based model,whereas the maximal residual was fitted in the soil type-based model.About 95% of SOCS could be found in Argosols,Cambosols and Isohumosols.The largest SOCS was found in the croplands with vegetation of Triticum aestivum L.,Sorghum bicolor(L.) Moench,Glycine max(L.) Merr.,Zea mays L.and Setaria italica(L.) P.Beauv. 展开更多
关键词 soil organic carbon stock model-then-calculate random forest linear mixed model northeastern China
下载PDF
Pedotransfer Functions for Estimating Soil Bulk Density:A Case Study in the Three-River Headwater Region of Qinghai Province,China 被引量:7
2
作者 YI Xiangsheng LI Guosheng YIN Yanyu 《Pedosphere》 SCIE CAS CSCD 2016年第3期362-373,共12页
Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement... Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement and can acquire the missing data of BD during routine soil surveys. In this study, multiple linear regression(MLR) and artificial neuron network(ANN) methods were used to develop PTFs for predicting BD from soil organic carbon(OC), texture and depth in the Three-River Headwater region of Qinghai Province, China. The performances of the developed PTFs were compared with 14 published PTFs using four indexes, the mean error(ME), standard deviation error(SDE), root mean squared error(RMSE) and coefficient of determination(R^2). Results showed that the performances of published PTFs developed using exponential regression were better than those developed using linear regression from OC. Alexander(1980)-B, Alexander(1980)-A and Manrique and Jones(1991)-B PTFs, which had good predictions, could be applied for the soils in the study area. The PTFs developed using MLR(MLR-PTFs) and ANN(ANN-PTFs) had better soil BD predictions than most of published PTFs. The ANN-PTFs had better performances than the MLR-PTFs and their performances could be improved when soil texture and depth were added as predictor variables. The idea of developing PTFs for predicting soil BD in the study area could provide reference for other areas and the results could lay foundation for the estimation of soil water retention and carbon pool. 展开更多
关键词 alpine soil artificial neural network multiple linear regression organic carbon soil depth soil texture
原文传递
Source apportionment of PM_(2.5)light extinction in an urban atmosphere in China 被引量:8
3
作者 Zijuan Lan Bin Zhang +5 位作者 Xiaofeng Huang Qiao Zhu Jinfeng Yuan Liwu Zeng Min Hu Lingyan He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期277-284,共8页
Haze in China is primarily caused by high pollution of atmospheric fine particulates(PM2.5).However, the detailed source structures of PM2.5 light extinction have not been well established, especially for the roles ... Haze in China is primarily caused by high pollution of atmospheric fine particulates(PM2.5).However, the detailed source structures of PM2.5 light extinction have not been well established, especially for the roles of various organic aerosols, which makes haze management lack specified targets. This study obtained the mass concentrations of the chemical compositions and the light extinction coefficients of fine particles in the winter in Dongguan, Guangdong Province, using high time resolution aerosol observation instruments. We combined the positive matrix factor(PMF) analysis model of organic aerosols and the multiple linear regression method to establish a quantitative relationship model between the main chemical components, in particular the different sources of organic aerosols and the extinction coefficients of fine particles with a high goodness of fit(R^2= 0.953). The results show that the contribution rates of ammonium sulphate,ammonium nitrate, biomass burning organic aerosol(BBOA), secondary organic aerosol(SOA) and black carbon(BC) were 48.1%, 20.7%, 15.0%, 10.6%, and 5.6%, respectively. It can be seen that the contribution of the secondary aerosols is much higher than that of the primary aerosols(79.4% versus 20.6%) and are a major factor in the visibility decline. BBOA is found to have a high visibility destroying potential, with a high mass extinction coefficient, and was the largest contributor during some high pollution periods. A more detailed analysis indicates that the contribution of the enhanced absorption caused by BC mixing state was approximately 37.7% of the total particle absorption and should not be neglected. 展开更多
关键词 Fine particles Organic aerosol Positive matrix factorisation Light extinction Multiple linear regression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部