Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is ch...Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is chosen according to the value of importance ratio.The influence of weight coefficient to the optimization result is discussed in detail and the numerical example shows that both the model and method proposed is doable.展开更多
The current structure of Landmark University (LU) was induced by raising a generation of solution providers through a qualitative and life-applicable training system that focuses on values and creative knowledge by ma...The current structure of Landmark University (LU) was induced by raising a generation of solution providers through a qualitative and life-applicable training system that focuses on values and creative knowledge by making it more responsive and relevant to the modern-day demands of demonstration, industrialization and development. The challenge facing Landmark University is the question of which of its numerous projects they should invest to give maximum output with minimum input. In this paper, we maximize the Net Present Value (NPV) and maintain the net discount cash overflow of each project per period as contained and extracted as the secondary data of cash inflows of the Landmark University (LU) monthly financial statement and annual reports from 2012 to 2017 of which the documents have been regrouped as small and large scale projects as many enterprises make more use of the trial-and-error method and as such firms have been finding it difficult in allocating scarce resources in a manner that will ensure profit maximization and/or cost minimization with a simple and accurate decision making by the company through an optimization principle in selecting LU project under multi-period capital rationing using linear programming (LP) and integer programming (IP). The annual net cash flow which is the difference between the cash inflows and cash outflows during each period for the project was estimated and recorded. The discount factors were estimated at cost of capital of 10% for each cash flow per period with the corresponding NPV at 10% which revealed that the optimal decision achieves maximum returns of $110 × 102 and this assisted the project manager to select a large number of the variable projects that can maximize the profit which is far better than relying on an ad-hoc judgmental approach to project investment that could have cost 160 × 102 for the same project. Sensitivity analysis on the project parameters are also carried out to test the extent to which project selection is sensitive to changes in the parameters of the system revealed that a little reduction and or addition of reduced cost by certain amount or percentages to its corresponding coefficient in the objective function effect no changes in the shadow prices with solution values for variables (x1), (x4), (x5) and the optimal objective function.展开更多
In this study, Simplex Method, a Linear Programming technique was used to create a mathematical model that optimized the financial portfolio of Golden Guinea Breweries Plc, Nigeria. This work was motivated by the obse...In this study, Simplex Method, a Linear Programming technique was used to create a mathematical model that optimized the financial portfolio of Golden Guinea Breweries Plc, Nigeria. This work was motivated by the observed and anticipated miscalculations which Golden Guinea Breweries was bound to face if appropriate linear programming techniques were not applied in determining the profit level. This study therefore aims at using Simplex Method to create a Mathematical Model that will optimize the production of brewed drinks for Golden Guinea Breweries Plc. The first methodology involved the collection of sample data from the company, analyzed and the relevant coefficients were deployed for the coding of the model. Secondly, the indices collected from the first method were deployed in the software model called PHP simplex, an online software for solving Linear Programming Problem to access the profitability of the organization. The study showed that Linear Programming Model would give a high profit coefficient of N9,190,862,833 when compared with the result obtained from the manual computation which gave a profit coefficient of N7,172,093,375. Also, Bergedoff Lager, Eagle Stout and Bergedoff Malta were found not to contribute to overall profitability of the company and it was therefore recommended that their productions should be discontinued. It also recommends that various quantities of Golden Guinea Lager (1 × 12) and Golden Guinea Lager (1 × 24) should be produced.展开更多
In this paper,we study the minimax linear fractional programming problem on a non-empty bounded set,called problem(MLFP),and we design a branch and bound algorithm to find a globally optimal solution of(MLFP).Firstly,...In this paper,we study the minimax linear fractional programming problem on a non-empty bounded set,called problem(MLFP),and we design a branch and bound algorithm to find a globally optimal solution of(MLFP).Firstly,we convert the problem(MLFP)to a problem(EP2)that is equivalent to it.Secondly,by applying the convex relaxation technique to problem(EP2),a convex quadratic relaxation problem(CQRP)is obtained.Then,the overall framework of the algorithm is given and its convergence is proved,the worst-case iteration number is also estimated.Finally,experimental data are listed to illustrate the effectiveness of the algorithm.展开更多
In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current ...In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.展开更多
This work presents a new methodology based on Linear Programming (LP) to tune Proportional-Integral-Derivative (PID) control parameters. From a specification of a desired output time domain of the plant, a linear opti...This work presents a new methodology based on Linear Programming (LP) to tune Proportional-Integral-Derivative (PID) control parameters. From a specification of a desired output time domain of the plant, a linear optimization system is proposed to adjust the PID controller leading the output signal to stable operation condition with minimum oscillations. The constraint set used in the optimization process is defined by using numerical integration approach. The generated optimization problem is convex and easily solved using an interior point algorithm. Results obtained using familiar plants from literature have shown that the proposed linear programming problem is very effective for tuning PID controllers.展开更多
In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be...In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.展开更多
With the expression theorem of convex polyhedron, this paper gives the general expression for the solutions in standard linear programming problems. And the calculation procedures in determining the optimal solutions ...With the expression theorem of convex polyhedron, this paper gives the general expression for the solutions in standard linear programming problems. And the calculation procedures in determining the optimal solutions are also given.展开更多
For the transportation problem, Sharma and Sharma [1] have given a very computationally efficient heuristic (runs in O(c*n2) time) to give very good dual solution to transportation problem. Sharma and Prasad [2] have ...For the transportation problem, Sharma and Sharma [1] have given a very computationally efficient heuristic (runs in O(c*n2) time) to give very good dual solution to transportation problem. Sharma and Prasad [2] have given an efficient heuristic (complexity O(n3) procedure to give a very good primal solution (that is generally non-basic feasible solution) to transportation problem by using the very good dual solution given by Sharma and Sharma [2]. In this paper we use the solution given by Sharma and Prasad [2] to get a very good Basic Feasible Solution to transportation problem, so that network simplex (worst case complexity (O(n3*(log(n))) can be used to reach the optimal solution to transportation problem. In the second part of this paper, we give a simple heuristic procedure to get a very good BFS to linear programming problem from the solution given by Karmarkar [3] (that generally produces a very good non-basic feasible solution in polynomial time (O(n5.5)). We give a procedure to obtain a good BFS for LP by starting from the solution given by Karmarkar [3]. We note that this procedure (given here) is significantly different from the procedure given in [4].展开更多
As the market competition of steel mills is severe,deoxidization alloying is an important link in the metallurgical process.To solve this problem,principal component regression analysis is adopted to reduce the dimens...As the market competition of steel mills is severe,deoxidization alloying is an important link in the metallurgical process.To solve this problem,principal component regression analysis is adopted to reduce the dimension of influencing factors,and a reasonable and reliable prediction model of element yield is established.Based on the constraint conditions such as target cost function constraint,yield constraint and non-negative constraint,linear programming is adopted to design the lowest cost batting scheme that meets the national standards and production requirements.The research results provide a reliable optimization model for the deoxidization and alloying process of steel mills,which is of positive significance for improving the market competitiveness of steel mills,reducing waste discharge and protecting the environment.展开更多
An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established ...An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. Th...In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.展开更多
Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research metho...Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.展开更多
Despite it is often available in practice, information of optimal value of linear programming problems is ignored by conventional simplex algorithms. To speed up solution process, we propose in this paper some vari...Despite it is often available in practice, information of optimal value of linear programming problems is ignored by conventional simplex algorithms. To speed up solution process, we propose in this paper some variants of the bisection algorithm, explo展开更多
In this paper, four potential cities to host an intermodal terminal for containers flowing through the Togolese transport corridor are examined. The transport cost minimization through the corridor is the main objecti...In this paper, four potential cities to host an intermodal terminal for containers flowing through the Togolese transport corridor are examined. The transport cost minimization through the corridor is the main objective. Consequently, the transport modes that offer the least cost to the transport supply chain are proposed. To attain this goal the paper aims to identify the optimal location for an intermodal terminal on the Togolese corridor, by using the mathematical linear programming model. For this, three transport scenarios are analyzed, the rail, the road, and the combination of these two transport modes to each of the landlocked countries (LLCs) capital cities of Burkina Faso, Mali and Niger. Data of the average transport cost per mode, the cargo demand of the LLCs, and the distances from origin to destinations are input in the LINGO software. Based on the optimization results, we find that among the preselected terminals, the city of Mango located at 550 km in the northern part of the country is the optimal host location for an intermodal terminal along the Togolese corridor. The results of this study may be helpful to transport policy makers in the quest of rendering better servicing to the landlocked countries.展开更多
Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting...Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting appropriate dose control parameters on various organs. In this paper, we propose an iterative approach to satisfy DVCs using a multi-objective linear programming (LP) model for solving beamlet intensities. This algorithm, starting from arbitrary initial parameter values, gradually updates the values through an iterative solution process toward optimal solution. This method finds appropriate parameter values through the trade-off between OAR sparing and target coverage to improve the solution. We compared the plan quality and the satisfaction of the DVCs by the proposed algorithm with two nonlinear approaches: a nonlinear FMO model solved by using the L-BFGS algorithm and another approach solved by a commercial treatment planning system (Eclipse 8.9). We retrospectively selected from our institutional database five patients with lung cancer and one patient with prostate cancer for this study. Numerical results show that our approach successfully improved target coverage to meet the DVCs, while trying to keep corresponding OAR DVCs satisfied. The LBFGS algorithm for solving the nonlinear FMO model successfully satisfied the DVCs in three out of five test cases. However, there is no recourse in the nonlinear FMO model for correcting unsatisfied DVCs other than manually changing some parameter values through trial and error to derive a solution that more closely meets the DVC requirements. The LP-based heuristic algorithm outperformed the current treatment planning system in terms of DVC satisfaction. A major strength of the LP-based heuristic approach is that it is not sensitive to the starting condition.展开更多
An efficient active-set approach is presented for both nonnegative and general linear programming by adding varying numbers of constraints at each iteration. Computational experiments demonstrate that the proposed app...An efficient active-set approach is presented for both nonnegative and general linear programming by adding varying numbers of constraints at each iteration. Computational experiments demonstrate that the proposed approach is significantly faster than previous active-set and standard linear programming algorithms.展开更多
Many Optimization problems in engineering and economic involve the challenging task of pondering both conflicting goals and random data. In this paper, we give an up-to-date overview of how important ideas from optimi...Many Optimization problems in engineering and economic involve the challenging task of pondering both conflicting goals and random data. In this paper, we give an up-to-date overview of how important ideas from optimization, probability theory and multicriteria decision analysis are interwoven to address situations where the presence of several objective functions and the stochastic nature of data are under one roof in a linear optimization context. In this way users of these models are not bound to caricature their problems by arbitrarily squeezing different objective functions into one and by blindly accepting fixed values in lieu of imprecise ones.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant.50139010).
文摘Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is chosen according to the value of importance ratio.The influence of weight coefficient to the optimization result is discussed in detail and the numerical example shows that both the model and method proposed is doable.
文摘The current structure of Landmark University (LU) was induced by raising a generation of solution providers through a qualitative and life-applicable training system that focuses on values and creative knowledge by making it more responsive and relevant to the modern-day demands of demonstration, industrialization and development. The challenge facing Landmark University is the question of which of its numerous projects they should invest to give maximum output with minimum input. In this paper, we maximize the Net Present Value (NPV) and maintain the net discount cash overflow of each project per period as contained and extracted as the secondary data of cash inflows of the Landmark University (LU) monthly financial statement and annual reports from 2012 to 2017 of which the documents have been regrouped as small and large scale projects as many enterprises make more use of the trial-and-error method and as such firms have been finding it difficult in allocating scarce resources in a manner that will ensure profit maximization and/or cost minimization with a simple and accurate decision making by the company through an optimization principle in selecting LU project under multi-period capital rationing using linear programming (LP) and integer programming (IP). The annual net cash flow which is the difference between the cash inflows and cash outflows during each period for the project was estimated and recorded. The discount factors were estimated at cost of capital of 10% for each cash flow per period with the corresponding NPV at 10% which revealed that the optimal decision achieves maximum returns of $110 × 102 and this assisted the project manager to select a large number of the variable projects that can maximize the profit which is far better than relying on an ad-hoc judgmental approach to project investment that could have cost 160 × 102 for the same project. Sensitivity analysis on the project parameters are also carried out to test the extent to which project selection is sensitive to changes in the parameters of the system revealed that a little reduction and or addition of reduced cost by certain amount or percentages to its corresponding coefficient in the objective function effect no changes in the shadow prices with solution values for variables (x1), (x4), (x5) and the optimal objective function.
文摘In this study, Simplex Method, a Linear Programming technique was used to create a mathematical model that optimized the financial portfolio of Golden Guinea Breweries Plc, Nigeria. This work was motivated by the observed and anticipated miscalculations which Golden Guinea Breweries was bound to face if appropriate linear programming techniques were not applied in determining the profit level. This study therefore aims at using Simplex Method to create a Mathematical Model that will optimize the production of brewed drinks for Golden Guinea Breweries Plc. The first methodology involved the collection of sample data from the company, analyzed and the relevant coefficients were deployed for the coding of the model. Secondly, the indices collected from the first method were deployed in the software model called PHP simplex, an online software for solving Linear Programming Problem to access the profitability of the organization. The study showed that Linear Programming Model would give a high profit coefficient of N9,190,862,833 when compared with the result obtained from the manual computation which gave a profit coefficient of N7,172,093,375. Also, Bergedoff Lager, Eagle Stout and Bergedoff Malta were found not to contribute to overall profitability of the company and it was therefore recommended that their productions should be discontinued. It also recommends that various quantities of Golden Guinea Lager (1 × 12) and Golden Guinea Lager (1 × 24) should be produced.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12071133 and 11871196).
文摘In this paper,we study the minimax linear fractional programming problem on a non-empty bounded set,called problem(MLFP),and we design a branch and bound algorithm to find a globally optimal solution of(MLFP).Firstly,we convert the problem(MLFP)to a problem(EP2)that is equivalent to it.Secondly,by applying the convex relaxation technique to problem(EP2),a convex quadratic relaxation problem(CQRP)is obtained.Then,the overall framework of the algorithm is given and its convergence is proved,the worst-case iteration number is also estimated.Finally,experimental data are listed to illustrate the effectiveness of the algorithm.
基金Supported by the National Natural Science Foundation of China(11971433)First Class Discipline of Zhe-jiang-A(Zhejiang Gongshang University-Statistics,1020JYN4120004G-091),Graduate Scientic Research and Innovation Foundation of Zhejiang Gongshang University.
文摘In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.
文摘This work presents a new methodology based on Linear Programming (LP) to tune Proportional-Integral-Derivative (PID) control parameters. From a specification of a desired output time domain of the plant, a linear optimization system is proposed to adjust the PID controller leading the output signal to stable operation condition with minimum oscillations. The constraint set used in the optimization process is defined by using numerical integration approach. The generated optimization problem is convex and easily solved using an interior point algorithm. Results obtained using familiar plants from literature have shown that the proposed linear programming problem is very effective for tuning PID controllers.
基金Supported by the Natural Science Foundation of Henan Province(0511012000 0511013600) Supported by the Science Foundation for Pure Research of Natural Science of the Education Department of Henan Province(200512950001)
文摘In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.
文摘With the expression theorem of convex polyhedron, this paper gives the general expression for the solutions in standard linear programming problems. And the calculation procedures in determining the optimal solutions are also given.
文摘For the transportation problem, Sharma and Sharma [1] have given a very computationally efficient heuristic (runs in O(c*n2) time) to give very good dual solution to transportation problem. Sharma and Prasad [2] have given an efficient heuristic (complexity O(n3) procedure to give a very good primal solution (that is generally non-basic feasible solution) to transportation problem by using the very good dual solution given by Sharma and Sharma [2]. In this paper we use the solution given by Sharma and Prasad [2] to get a very good Basic Feasible Solution to transportation problem, so that network simplex (worst case complexity (O(n3*(log(n))) can be used to reach the optimal solution to transportation problem. In the second part of this paper, we give a simple heuristic procedure to get a very good BFS to linear programming problem from the solution given by Karmarkar [3] (that generally produces a very good non-basic feasible solution in polynomial time (O(n5.5)). We give a procedure to obtain a good BFS for LP by starting from the solution given by Karmarkar [3]. We note that this procedure (given here) is significantly different from the procedure given in [4].
文摘As the market competition of steel mills is severe,deoxidization alloying is an important link in the metallurgical process.To solve this problem,principal component regression analysis is adopted to reduce the dimension of influencing factors,and a reasonable and reliable prediction model of element yield is established.Based on the constraint conditions such as target cost function constraint,yield constraint and non-negative constraint,linear programming is adopted to design the lowest cost batting scheme that meets the national standards and production requirements.The research results provide a reliable optimization model for the deoxidization and alloying process of steel mills,which is of positive significance for improving the market competitiveness of steel mills,reducing waste discharge and protecting the environment.
文摘An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
文摘In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.
文摘Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.
文摘Despite it is often available in practice, information of optimal value of linear programming problems is ignored by conventional simplex algorithms. To speed up solution process, we propose in this paper some variants of the bisection algorithm, explo
文摘In this paper, four potential cities to host an intermodal terminal for containers flowing through the Togolese transport corridor are examined. The transport cost minimization through the corridor is the main objective. Consequently, the transport modes that offer the least cost to the transport supply chain are proposed. To attain this goal the paper aims to identify the optimal location for an intermodal terminal on the Togolese corridor, by using the mathematical linear programming model. For this, three transport scenarios are analyzed, the rail, the road, and the combination of these two transport modes to each of the landlocked countries (LLCs) capital cities of Burkina Faso, Mali and Niger. Data of the average transport cost per mode, the cargo demand of the LLCs, and the distances from origin to destinations are input in the LINGO software. Based on the optimization results, we find that among the preselected terminals, the city of Mango located at 550 km in the northern part of the country is the optimal host location for an intermodal terminal along the Togolese corridor. The results of this study may be helpful to transport policy makers in the quest of rendering better servicing to the landlocked countries.
文摘Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting appropriate dose control parameters on various organs. In this paper, we propose an iterative approach to satisfy DVCs using a multi-objective linear programming (LP) model for solving beamlet intensities. This algorithm, starting from arbitrary initial parameter values, gradually updates the values through an iterative solution process toward optimal solution. This method finds appropriate parameter values through the trade-off between OAR sparing and target coverage to improve the solution. We compared the plan quality and the satisfaction of the DVCs by the proposed algorithm with two nonlinear approaches: a nonlinear FMO model solved by using the L-BFGS algorithm and another approach solved by a commercial treatment planning system (Eclipse 8.9). We retrospectively selected from our institutional database five patients with lung cancer and one patient with prostate cancer for this study. Numerical results show that our approach successfully improved target coverage to meet the DVCs, while trying to keep corresponding OAR DVCs satisfied. The LBFGS algorithm for solving the nonlinear FMO model successfully satisfied the DVCs in three out of five test cases. However, there is no recourse in the nonlinear FMO model for correcting unsatisfied DVCs other than manually changing some parameter values through trial and error to derive a solution that more closely meets the DVC requirements. The LP-based heuristic algorithm outperformed the current treatment planning system in terms of DVC satisfaction. A major strength of the LP-based heuristic approach is that it is not sensitive to the starting condition.
文摘An efficient active-set approach is presented for both nonnegative and general linear programming by adding varying numbers of constraints at each iteration. Computational experiments demonstrate that the proposed approach is significantly faster than previous active-set and standard linear programming algorithms.
文摘Many Optimization problems in engineering and economic involve the challenging task of pondering both conflicting goals and random data. In this paper, we give an up-to-date overview of how important ideas from optimization, probability theory and multicriteria decision analysis are interwoven to address situations where the presence of several objective functions and the stochastic nature of data are under one roof in a linear optimization context. In this way users of these models are not bound to caricature their problems by arbitrarily squeezing different objective functions into one and by blindly accepting fixed values in lieu of imprecise ones.