Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as l...Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as linear composite(LC)gas reservoirs.Although some analytical/semi-analytical models have been proposed to investigate pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas,almost all of them focus on vertical wells and studies on multiple fractured horizontal wells are rare.After the pressure wave arrives at the leaky fault,pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults.Understanding the effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design.Therefore,a semi-analytical model of finite-conductivity multiple fractured horizontal(FCMFH)wells in LC gas reservoirs is established based on Laplace-space superposition principle and fracture discrete method.The proposed model is validated against commercial numerical simulator.Type curves are obtained to study pressure characteristics and identify flow regimes.The effects of some parameters on type curves are discussed.The proposed model will have a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs.展开更多
As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir char...As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel efficiency and robustness of the proposed method by applying it to million-cell benchmark problems.展开更多
Recent research modeling uncertainty in water resource systems has highlighted the use of fuzzy logic based approaches. The uncertainties in water resource systems include fuzziness, subjectivity, imprecision and lack...Recent research modeling uncertainty in water resource systems has highlighted the use of fuzzy logic based approaches. The uncertainties in water resource systems include fuzziness, subjectivity, imprecision and lack of adequate data. In this paper we focus on Fuzzy Linear Programming (FLP) problem for reservoir opera- tion with fuzzy objectives function and fuzzy constraints. Uncertainty in reservoir operation parameters such as reservoir storages, releases for irrigation, releases for hydropower production, irrigation demands, and power demands are considered by treating them as a fuzzy set. This study is devoted to the identification of optimal operating policy using three different models. A fuzzy linear programming reservoir operation models are developed within a linear programming framework. These models are applied to a case study of Jayakwadi reservoir stage -II, Maharashtra State, India with the objective of maximization of releases for irrigation and hydropower. Fuzzy set theory is used to model imprecision in various parameters by developing three models. First model considers fuzzy resources, second model is with fuzzy technological coefficients and third model considers both, fuzzy technological coefficients and fuzzy resources in linear programming framework. Fuzziness in objective function and in the constraints is quantified by a membership functions. These three models are solved to obtain compromise solution by simultaneously optimizing the fuzzified objectives and constraints. The degree of satisfaction is obtained by simultaneously optimizing the objectives are 0.53, 0.52 and 0.525 by three models respectively. The obtained result show that proposed methodology provides an effective and useful tool for reservoir operation where decision maker can decides to opt for a model depends on the imprecision involved in reservoir operation model parameters.展开更多
Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid cha...Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.展开更多
Water is the soul of the world. It is the most important element for the survival of humans, animals, birds, plants and all other living things on earth. Water is essential for the beginning of life as well as regular...Water is the soul of the world. It is the most important element for the survival of humans, animals, birds, plants and all other living things on earth. Water is essential for the beginning of life as well as regular availability of water ensuring the survival, growth and overall nourishment. Thus, proper planning and use of reservoir water are essential for all. To tackle this issue different optimization techniques underline their need and importance in the reservoir operations. In the present study, multi-reservoir optimization model is developed using Python programing language considering the objective of maximization of total annual release for hydropower generation. Model is applied to 3 reservoirs from Godavari River basin from Maharashtra state India. Water essential for conservation of environment has also been made available in river as environmental flow as per the recommendations of Central Water Commission (CWC) India. Developed optimization model provides optimal monthly operation policies.展开更多
Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river...Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.展开更多
In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and M...In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.展开更多
基金Project(2017QHZ031)supported by Scientific Research Starting Project of Southwest Petroleum University,ChinaProject(18TD0013)supported by Science and Technology Innovation Team of Education Department of Sichuan for Dynamical System and Its Applications,ChinaProject(2017CXTD02)supported by Youth Science and Technology Innovation Team of Southwest Petroleum University for Nonlinear Systems,China。
文摘Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as linear composite(LC)gas reservoirs.Although some analytical/semi-analytical models have been proposed to investigate pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas,almost all of them focus on vertical wells and studies on multiple fractured horizontal wells are rare.After the pressure wave arrives at the leaky fault,pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults.Understanding the effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design.Therefore,a semi-analytical model of finite-conductivity multiple fractured horizontal(FCMFH)wells in LC gas reservoirs is established based on Laplace-space superposition principle and fracture discrete method.The proposed model is validated against commercial numerical simulator.Type curves are obtained to study pressure characteristics and identify flow regimes.The effects of some parameters on type curves are discussed.The proposed model will have a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs.
基金support through PetroChina New-generation Reservoir Simulation Software (2011A-1010)the Program of Research on Continental Sedimentary Oil Reservoir Simulation (z121100004912001)+7 种基金founded by Beijing Municipal Science & Technology Commission and PetroChina Joint Research Funding12HT1050002654partially supported by the NSFC Grant 11201398Hunan Provincial Natural Science Foundation of China Grant 14JJ2063Specialized Research Fund for the Doctoral Program of Higher Education of China Grant 20124301110003partially supported by the Dean’s Startup Fund, Academy of Mathematics and System Sciences and the State High Tech Development Plan of China (863 Program 2012AA01A309partially supported by NSFC Grant 91130002Program for Changjiang Scholars and Innovative Research Team in University of China Grant IRT1179the Scientific Research Fund of the Hunan Provincial Education Department of China Grant 12A138
文摘As a result of the interplay between advances in computer hardware, software, and algorithm, we are now in a new era of large-scale reservoir simulation, which focuses on accurate flow description, fine reservoir characterization, efficient nonlinear/linear solvers, and parallel implementation. In this paper, we discuss a multilevel preconditioner in a new-generation simulator and its implementation on multicore computers. This preconditioner relies on the method of subspace corrections to solve large-scale linear systems arising from fully implicit methods in reservoir simulations. We investigate the parallel efficiency and robustness of the proposed method by applying it to million-cell benchmark problems.
文摘Recent research modeling uncertainty in water resource systems has highlighted the use of fuzzy logic based approaches. The uncertainties in water resource systems include fuzziness, subjectivity, imprecision and lack of adequate data. In this paper we focus on Fuzzy Linear Programming (FLP) problem for reservoir opera- tion with fuzzy objectives function and fuzzy constraints. Uncertainty in reservoir operation parameters such as reservoir storages, releases for irrigation, releases for hydropower production, irrigation demands, and power demands are considered by treating them as a fuzzy set. This study is devoted to the identification of optimal operating policy using three different models. A fuzzy linear programming reservoir operation models are developed within a linear programming framework. These models are applied to a case study of Jayakwadi reservoir stage -II, Maharashtra State, India with the objective of maximization of releases for irrigation and hydropower. Fuzzy set theory is used to model imprecision in various parameters by developing three models. First model considers fuzzy resources, second model is with fuzzy technological coefficients and third model considers both, fuzzy technological coefficients and fuzzy resources in linear programming framework. Fuzziness in objective function and in the constraints is quantified by a membership functions. These three models are solved to obtain compromise solution by simultaneously optimizing the fuzzified objectives and constraints. The degree of satisfaction is obtained by simultaneously optimizing the objectives are 0.53, 0.52 and 0.525 by three models respectively. The obtained result show that proposed methodology provides an effective and useful tool for reservoir operation where decision maker can decides to opt for a model depends on the imprecision involved in reservoir operation model parameters.
基金supported by the National Science and Technology Major Project(No.2016ZX05047-002-001)
文摘Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.
文摘Water is the soul of the world. It is the most important element for the survival of humans, animals, birds, plants and all other living things on earth. Water is essential for the beginning of life as well as regular availability of water ensuring the survival, growth and overall nourishment. Thus, proper planning and use of reservoir water are essential for all. To tackle this issue different optimization techniques underline their need and importance in the reservoir operations. In the present study, multi-reservoir optimization model is developed using Python programing language considering the objective of maximization of total annual release for hydropower generation. Model is applied to 3 reservoirs from Godavari River basin from Maharashtra state India. Water essential for conservation of environment has also been made available in river as environmental flow as per the recommendations of Central Water Commission (CWC) India. Developed optimization model provides optimal monthly operation policies.
文摘Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.
文摘In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.