Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
We consider the interior inverse scattering problem for recovering the shape of a penetrable partially coated cavity with external obstacles from the knowledge of measured scattered waves due to point sources.In the f...We consider the interior inverse scattering problem for recovering the shape of a penetrable partially coated cavity with external obstacles from the knowledge of measured scattered waves due to point sources.In the first part,we obtain the well-posedness of the direct scattering problem by the variational method.In the second part,we establish the mathematical basis of the linear sampling method to recover both the shape of the cavity,and the shape of the external obstacle,however the exterior transmission eigenvalue problem also plays a key role in the discussion of this paper.展开更多
In this paper, we consider the inverse scattering by chiral obstacle in electromagnetic fields, and prove that the linear sampling method is also effective to determine the support of a chiral obstacle from the noisy ...In this paper, we consider the inverse scattering by chiral obstacle in electromagnetic fields, and prove that the linear sampling method is also effective to determine the support of a chiral obstacle from the noisy far field data.展开更多
In the reliability analysis of complex structures,response surface method(RSM)has been suggested as an efficient technique to estimate the actual but implicit limit state function.A set of sample points are needed to ...In the reliability analysis of complex structures,response surface method(RSM)has been suggested as an efficient technique to estimate the actual but implicit limit state function.A set of sample points are needed to fit to the implicit function.It has been noted that the accuracy of RSM depends highly on the so-called sample points.However,the technique for point selection has had little attention.In the present study,an improved response surface method(IRSM)based on two sample point selection techniques,named the direction cosines projected strategy(DCS)and the limit step length iteration strategy(LSS),is investigated.Since it uses the sampling points selected to be located in the region close to the original failure surface,and since it needs only one response surface,the IRSM should be accurate and simple in practical structural problems.Applications to several typical examples have helped to elucidate the successful working of the IRSM.展开更多
In this paper, we are concerned with the inverse transmission eigenvalue problem to recover the shape as well as the constant refractive index of a penetrable medium scatterer. The linear sampling method is employed t...In this paper, we are concerned with the inverse transmission eigenvalue problem to recover the shape as well as the constant refractive index of a penetrable medium scatterer. The linear sampling method is employed to determine the transmission eigenvalues within a certain wavenumber interval based on far-field measurements. Based on a prior information given by the linear sampling method, the neural network approach is proposed for the reconstruction of the unknown scatterer. We divide the wavenumber intervals into several subintervals, ensuring that each transmission eigenvalue is located in its corresponding subinterval. In each such subinterval, the wavenumber that yields the maximum value of the indicator functional will be included in the input set during the generation of the training data. This technique for data generation effectively ensures the consistent dimensions of model input. The refractive index and shape are taken as the output of the network. Due to the fact that transmission eigenvalues considered in our method are relatively small,certain super-resolution effects can also be generated. Numerical experiments are presented to verify the effectiveness and promising features of the proposed method in two and three dimensions.展开更多
One hundred and sixty-eight genotypes of cotton from the same growing region were used as a germplasm group to study the validity of different genetic distances in constructing cotton core subset. Mixed linear model a...One hundred and sixty-eight genotypes of cotton from the same growing region were used as a germplasm group to study the validity of different genetic distances in constructing cotton core subset. Mixed linear model approach was employed to unbiasedly predict genotypic values of 20 traits for eliminating the environmental effect. Six commonly used genetic distances(Euclidean,standardized Euclidean,Mahalanobis,city block,cosine and correlation distances) combining four commonly used hierarchical cluster methods(single distance,complete distance,unweighted pair-group average and Ward's methods) were used in the least distance stepwise sampling(LDSS) method for constructing different core subsets. The analyses of variance(ANOVA) of different evaluating parameters showed that the validities of cosine and correlation distances were inferior to those of Euclidean,standardized Euclidean,Mahalanobis and city block distances. Standardized Euclidean distance was slightly more effective than Euclidean,Mahalanobis and city block distances. The principal analysis validated standardized Euclidean distance in the course of constructing practical core subsets. The covariance matrix of accessions might be ill-conditioned when Mahalanobis distance was used to calculate genetic distance at low sampling percentages,which led to bias in small-sized core subset construction. The standardized Euclidean distance is recommended in core subset construction with LDSS method.展开更多
Some difficulties are pointed out in the methods for identification of obstacles based on the numerical verification of tile inclusion of a function in the range of an operator. Numerical examples are given to illustr...Some difficulties are pointed out in the methods for identification of obstacles based on the numerical verification of tile inclusion of a function in the range of an operator. Numerical examples are given to illustrate theoretical conclusions. Alternative methods of identification of obstacles are mentioned: the Support Function Method (SFM) and the Modified Rayleigh Conjecture (MRC) method.展开更多
In this paper, we consider the problem of delay-dependent stability for state estimation of neural networks with two additive time–varying delay components via sampleddata control. By constructing a suitable Lyapunov...In this paper, we consider the problem of delay-dependent stability for state estimation of neural networks with two additive time–varying delay components via sampleddata control. By constructing a suitable Lyapunov–Krasovskii functional with triple and four integral terms and by using Jensen's inequality, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities(LMIs) to ensure the asymptotic stability of the equilibrium point of the considered neural networks. Instead of the continuous measurement,the sampled measurement is used to estimate the neuron states, and a sampled-data estimator is constructed. Due to the delay-dependent method, a significant source of conservativeness that could be further reduced lies in the calculation of the time-derivative of the Lyapunov functional. The relationship between the time-varying delay and its upper bound is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some less conservative stability criteria are established for systems with two successive delay components. Finally, numerical example is given to show the superiority of proposed method.展开更多
The basic analysis and synthesis approaches for multirate sampled-data control system are reviewed. After giving the definition and some properties of multirate system are given, its origination, development and desig...The basic analysis and synthesis approaches for multirate sampled-data control system are reviewed. After giving the definition and some properties of multirate system are given, its origination, development and design methods are discussed in detail. Finally, some remarks, expectations and conclusions on the present research status and the research directions are given.展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(2019D01A05)supported by the NSFC(11571132)。
文摘We consider the interior inverse scattering problem for recovering the shape of a penetrable partially coated cavity with external obstacles from the knowledge of measured scattered waves due to point sources.In the first part,we obtain the well-posedness of the direct scattering problem by the variational method.In the second part,we establish the mathematical basis of the linear sampling method to recover both the shape of the cavity,and the shape of the external obstacle,however the exterior transmission eigenvalue problem also plays a key role in the discussion of this paper.
文摘In this paper, we consider the inverse scattering by chiral obstacle in electromagnetic fields, and prove that the linear sampling method is also effective to determine the support of a chiral obstacle from the noisy far field data.
文摘In the reliability analysis of complex structures,response surface method(RSM)has been suggested as an efficient technique to estimate the actual but implicit limit state function.A set of sample points are needed to fit to the implicit function.It has been noted that the accuracy of RSM depends highly on the so-called sample points.However,the technique for point selection has had little attention.In the present study,an improved response surface method(IRSM)based on two sample point selection techniques,named the direction cosines projected strategy(DCS)and the limit step length iteration strategy(LSS),is investigated.Since it uses the sampling points selected to be located in the region close to the original failure surface,and since it needs only one response surface,the IRSM should be accurate and simple in practical structural problems.Applications to several typical examples have helped to elucidate the successful working of the IRSM.
基金supported by the Jilin Natural Science Foundation,China(No.20220101040JC)the National Natural Science Foundation of China(No.12271207)+2 种基金supported by the Hong Kong RGC General Research Funds(projects 11311122,12301420 and 11300821)the NSFC/RGC Joint Research Fund(project N-CityU 101/21)the France-Hong Kong ANR/RGC Joint Research Grant,A_CityU203/19.
文摘In this paper, we are concerned with the inverse transmission eigenvalue problem to recover the shape as well as the constant refractive index of a penetrable medium scatterer. The linear sampling method is employed to determine the transmission eigenvalues within a certain wavenumber interval based on far-field measurements. Based on a prior information given by the linear sampling method, the neural network approach is proposed for the reconstruction of the unknown scatterer. We divide the wavenumber intervals into several subintervals, ensuring that each transmission eigenvalue is located in its corresponding subinterval. In each such subinterval, the wavenumber that yields the maximum value of the indicator functional will be included in the input set during the generation of the training data. This technique for data generation effectively ensures the consistent dimensions of model input. The refractive index and shape are taken as the output of the network. Due to the fact that transmission eigenvalues considered in our method are relatively small,certain super-resolution effects can also be generated. Numerical experiments are presented to verify the effectiveness and promising features of the proposed method in two and three dimensions.
基金Project supported by the National Natural Science Foundation of China (No. 30270759)the Cooperation Project in Science and Technology between China and Poland Governments (No. 32-38)the Scientific Research Foundation for Doctors in Shandong Academy of Agricultural Sciences (No. [2007]20), China
文摘One hundred and sixty-eight genotypes of cotton from the same growing region were used as a germplasm group to study the validity of different genetic distances in constructing cotton core subset. Mixed linear model approach was employed to unbiasedly predict genotypic values of 20 traits for eliminating the environmental effect. Six commonly used genetic distances(Euclidean,standardized Euclidean,Mahalanobis,city block,cosine and correlation distances) combining four commonly used hierarchical cluster methods(single distance,complete distance,unweighted pair-group average and Ward's methods) were used in the least distance stepwise sampling(LDSS) method for constructing different core subsets. The analyses of variance(ANOVA) of different evaluating parameters showed that the validities of cosine and correlation distances were inferior to those of Euclidean,standardized Euclidean,Mahalanobis and city block distances. Standardized Euclidean distance was slightly more effective than Euclidean,Mahalanobis and city block distances. The principal analysis validated standardized Euclidean distance in the course of constructing practical core subsets. The covariance matrix of accessions might be ill-conditioned when Mahalanobis distance was used to calculate genetic distance at low sampling percentages,which led to bias in small-sized core subset construction. The standardized Euclidean distance is recommended in core subset construction with LDSS method.
文摘Some difficulties are pointed out in the methods for identification of obstacles based on the numerical verification of tile inclusion of a function in the range of an operator. Numerical examples are given to illustrate theoretical conclusions. Alternative methods of identification of obstacles are mentioned: the Support Function Method (SFM) and the Modified Rayleigh Conjecture (MRC) method.
文摘In this paper, we consider the problem of delay-dependent stability for state estimation of neural networks with two additive time–varying delay components via sampleddata control. By constructing a suitable Lyapunov–Krasovskii functional with triple and four integral terms and by using Jensen's inequality, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities(LMIs) to ensure the asymptotic stability of the equilibrium point of the considered neural networks. Instead of the continuous measurement,the sampled measurement is used to estimate the neuron states, and a sampled-data estimator is constructed. Due to the delay-dependent method, a significant source of conservativeness that could be further reduced lies in the calculation of the time-derivative of the Lyapunov functional. The relationship between the time-varying delay and its upper bound is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some less conservative stability criteria are established for systems with two successive delay components. Finally, numerical example is given to show the superiority of proposed method.
文摘The basic analysis and synthesis approaches for multirate sampled-data control system are reviewed. After giving the definition and some properties of multirate system are given, its origination, development and design methods are discussed in detail. Finally, some remarks, expectations and conclusions on the present research status and the research directions are given.