The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In o...The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.展开更多
This paper describes a system designed for linear servo cart systems that employs an integral-based Linear Active Disturbance Rejection Control(ILADRC)scheme to detect and respond to disturbances.The upgrade in this c...This paper describes a system designed for linear servo cart systems that employs an integral-based Linear Active Disturbance Rejection Control(ILADRC)scheme to detect and respond to disturbances.The upgrade in this control technique provides extensive immunity to uncertainties,attenuation,internal disturbances,and external sources of noise.The fundamental technology base of LADRC is Extended State Observer(ESO).LADRC,when combined with Integral action,becomes a hybrid control technique,namely ILADRC.Setpoint tracking is based on Bode’s Ideal Transfer Function(BITF)in this proposed ILADRC technique.This proves to be a very robust and appropriate pole placement scheme.The proposed LSC system has experimented with the hybrid ILADRC technique plotted the results.From the results,it is evident that the proposed ILADRC scheme enhances the robustness of the LSC system with remarkable disturbance rejection.Furthermore,the results of a linear quadratic regulator(LQR)and ILADRC schemes are comparatively analyzed.This analysis deduced the improved performance of ILADRC over the LQR control scheme.展开更多
The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51335009)Major National Science and Technology Project of China(Grant No.2011ZX04001-011)
文摘The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.
基金This research work was funded by Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia under grant no(IFPRC-023-135-2020)。
文摘This paper describes a system designed for linear servo cart systems that employs an integral-based Linear Active Disturbance Rejection Control(ILADRC)scheme to detect and respond to disturbances.The upgrade in this control technique provides extensive immunity to uncertainties,attenuation,internal disturbances,and external sources of noise.The fundamental technology base of LADRC is Extended State Observer(ESO).LADRC,when combined with Integral action,becomes a hybrid control technique,namely ILADRC.Setpoint tracking is based on Bode’s Ideal Transfer Function(BITF)in this proposed ILADRC technique.This proves to be a very robust and appropriate pole placement scheme.The proposed LSC system has experimented with the hybrid ILADRC technique plotted the results.From the results,it is evident that the proposed ILADRC scheme enhances the robustness of the LSC system with remarkable disturbance rejection.Furthermore,the results of a linear quadratic regulator(LQR)and ILADRC schemes are comparatively analyzed.This analysis deduced the improved performance of ILADRC over the LQR control scheme.
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.