Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applicat...Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applications requiring linear motion.However,its use is not that popular which instigated an active interest in the evolution of newer LSRM configurations.Enhancement in its propulsion force along with the reduction in force ripples,weight,acoustic noise,and vibration have been the main objectives in recently proposed LSRM designs.In this paper,recently proposed LSRM designs are reviewed and analyzed.The paper presents a one-stop introduction and a complete update to the designs,both in terms of qualitative and quantitative parameters.In addition,it takes into account the challenges in the implementation of these designs.Based on a detailed comparison of these designs as presented in this paper,an appropriate design can be chosen for a given application.展开更多
The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.Ho...The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.However,the corresponding thrust density and efficiency remain insufficient.This study focused on a new type of flat linear switched reluctance motor(LSRM),using the finite element software to establish a structural model,and optimized the design with the goal of improving the efficiency and energy density.The entropy method was adopted for sensitivity stratification to objectively select weights to avoid the influence of subjectively selected different proportional weights on the optimization results.Based on the entropy method,the sensitivity of different structural parameters was stratified,and the simulated annealing algorithm,response surface method,and single parameter scanning method were combined for optimization.Finally,the optimal structural size parameters of the motor were determined.Based on the two-dimensional finite element method,to simulate the electromagnetic performance of the reluctance motor under different operating conditions,such as thrust,loss,and efficiency,changes in motor performance before and after optimization were compared to verify the high power generation efficiency and energy density of the optimized linear motor.展开更多
基金Authors thank MANIT Bhopal and Ministry of Education,India for extending financial support for the research work.
文摘Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applications requiring linear motion.However,its use is not that popular which instigated an active interest in the evolution of newer LSRM configurations.Enhancement in its propulsion force along with the reduction in force ripples,weight,acoustic noise,and vibration have been the main objectives in recently proposed LSRM designs.In this paper,recently proposed LSRM designs are reviewed and analyzed.The paper presents a one-stop introduction and a complete update to the designs,both in terms of qualitative and quantitative parameters.In addition,it takes into account the challenges in the implementation of these designs.Based on a detailed comparison of these designs as presented in this paper,an appropriate design can be chosen for a given application.
基金This work is supported by the National Natural Science Foundation of China(52077141)the Natural Science Foundation of Liaoning Province(2021-YQ-09)the Liaoning Bai Qian Wan Talents Program,China。
文摘The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.However,the corresponding thrust density and efficiency remain insufficient.This study focused on a new type of flat linear switched reluctance motor(LSRM),using the finite element software to establish a structural model,and optimized the design with the goal of improving the efficiency and energy density.The entropy method was adopted for sensitivity stratification to objectively select weights to avoid the influence of subjectively selected different proportional weights on the optimization results.Based on the entropy method,the sensitivity of different structural parameters was stratified,and the simulated annealing algorithm,response surface method,and single parameter scanning method were combined for optimization.Finally,the optimal structural size parameters of the motor were determined.Based on the two-dimensional finite element method,to simulate the electromagnetic performance of the reluctance motor under different operating conditions,such as thrust,loss,and efficiency,changes in motor performance before and after optimization were compared to verify the high power generation efficiency and energy density of the optimized linear motor.