This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is meas...This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.展开更多
This paper studies the problem of designing adaptive fault-tolerant controllers for linear tirne-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via s...This paper studies the problem of designing adaptive fault-tolerant controllers for linear tirne-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updating automatically to compensate the fault effects on systems. The designs are developed in the framework of linear matrix inequality (LMI) approach, which can enlarge the domain of attraction of closed-loop systems in the cases of actuator saturation and actuator failures. Two examples are given to illustrate the effectiveness of the design method.展开更多
A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced...A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.展开更多
This paper addresses the problem of robust iterative learning control design for a class of uncertain multiple-input multipleoutput discrete linear systems with actuator faults. The stability theory for linear repetit...This paper addresses the problem of robust iterative learning control design for a class of uncertain multiple-input multipleoutput discrete linear systems with actuator faults. The stability theory for linear repetitive processes is used to develop formulas for gain matrices design, together with convergent conditions in terms of linear matrix inequalities. An extension to deal with model uncertainty of the polytopic or norm bounded form is also developed and an illustrative example is given.展开更多
This paper proposes an active fault-tolerant control strategy for an aircraft with dissimilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the e...This paper proposes an active fault-tolerant control strategy for an aircraft with dissimilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the damaged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.展开更多
This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Ele...This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Electro-Hydrostatic Actuator(EHA). The long-term service and severe working conditions can result in multiple gradual faults which can ultimately degrade the system performance, resulting in the system model drift into the fault state characterized with parameter uncertainty. The paper proposes to address this problem by using the historical statistics of the multiple gradual faults and the proposed FMPF to amend the system model with parameter uncertainty. To balance the system model precision and computation time, a Moving Window(MW) method is used to determine the applied historical statistics. The FMPF based FTC strategy is developed for the amended system model where the system estimation and Linear Quadratic Regulator(LQR) are updated at the end of system sampling period. The simulations of DRAS system subjected to multiple faults have been performed and the results indicate the effectiveness of the proposed approach.展开更多
基金partly supported by Program for New Century Excellent Talents in University (No.NCET-04-0283)the Funds for Creative Research Groups of China (No.60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the State Key Program of National Natural Science of China (No.60534010)the Funds of National Science of China (No.60674021)the Funds of PhD program of MOE,China (No.20060145019)the 111 Project (No.B08015)
文摘This paper studies the problem of designing adaptive fault-tolerant H-infinity controllers for linear timeinvariant systems with actuator saturation. The disturbance tolerance ability of the closed-loop system is measured by an optimal index. The notion of an adaptive H-infinity performance index is proposed to describe the disturbance attenuation performances of closed-loop systems. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updated automatically to compensate for the fault effects on systems. The designs are developed in the framework of the linear matrix inequality (LMI) approach, which can guarantee the disturbance tolerance ability and adaptive H-infinity performances of closed-loop systems in the cases of actuator saturation and actuator failures. An example is given to illustrate the efficiency of the design method.
基金supported by Program for New Century Excellent Talents in University (NCET-04-0283)the Funds for Creative Research Groups of China (No.60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the State Key Program of National Natural Science of China (No.60534010)the Funds of National Science of China (No.60674021)the Funds of PhD program of MOE,China (No.20060145019)the 111 Project (B08015)
文摘This paper studies the problem of designing adaptive fault-tolerant controllers for linear tirne-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updating automatically to compensate the fault effects on systems. The designs are developed in the framework of linear matrix inequality (LMI) approach, which can enlarge the domain of attraction of closed-loop systems in the cases of actuator saturation and actuator failures. Two examples are given to illustrate the effectiveness of the design method.
基金Hohai University Startup Outlay for Doctor Scientific Research (2084/40601136)
文摘A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.
基金supported by National Natural Science Foundation of China(Nos.61273070 and 61203092)111 project(No.B12018)
文摘This paper addresses the problem of robust iterative learning control design for a class of uncertain multiple-input multipleoutput discrete linear systems with actuator faults. The stability theory for linear repetitive processes is used to develop formulas for gain matrices design, together with convergent conditions in terms of linear matrix inequalities. An extension to deal with model uncertainty of the polytopic or norm bounded form is also developed and an illustrative example is given.
基金supported by the National Basic Research Program of China (No 2014CB046402)the National Natural Science Foundation of China (No.51575019)111 Project of China
文摘This paper proposes an active fault-tolerant control strategy for an aircraft with dissimilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the damaged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.
基金co-supported by the National Natural Science Foundation of China(Nos.51620105010,51675019 and 51575019)the National Basic Research Program of China(No.2014CB046402)+1 种基金the Fundamental Research Funds for the Central Universities of China(YWF-17-BJ-Y-105)the "111" Project of China
文摘This paper presents a Fault Mode Probability Factor(FMPF) based Fault-Tolerant Control(FTC) strategy for multiple faults of Dissimilar Redundant Actuation System(DRAS)composed of Hydraulic Actuator(HA) and Electro-Hydrostatic Actuator(EHA). The long-term service and severe working conditions can result in multiple gradual faults which can ultimately degrade the system performance, resulting in the system model drift into the fault state characterized with parameter uncertainty. The paper proposes to address this problem by using the historical statistics of the multiple gradual faults and the proposed FMPF to amend the system model with parameter uncertainty. To balance the system model precision and computation time, a Moving Window(MW) method is used to determine the applied historical statistics. The FMPF based FTC strategy is developed for the amended system model where the system estimation and Linear Quadratic Regulator(LQR) are updated at the end of system sampling period. The simulations of DRAS system subjected to multiple faults have been performed and the results indicate the effectiveness of the proposed approach.