In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-tim...In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.展开更多
This paper proposes a method to ascertain the stability of two dimensional linear time invariant discrete system within the shifted unit circle which is represented by the form of characteristic equation. Further an e...This paper proposes a method to ascertain the stability of two dimensional linear time invariant discrete system within the shifted unit circle which is represented by the form of characteristic equation. Further an equivalent single dimensional characteristic equation is formed from the two dimensional characteristic equation then the stability formulation in the left half of Z-plane, where the roots of characteristic equation f(Z) = 0 should lie within the shifted unit circle. The coefficient of the unit shifted characteristic equation is suitably arranged in the form of matrix and the inner determinants are evaluated using proposed Jury’s concept. The proposed stability technique is simple and direct. It reduces the computational cost. An illustrative example shows the applicability of the proposed scheme.展开更多
In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal proces...In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.展开更多
This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nomina...This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nominal observer error system under mode-dependent persistent dwell-time(MPDT)switching are first established. Taking the disturbances into account, a novel asynchronous MPDT robust positive invariant(RPI) set and an asynchronous MPDT generalized RPI(GRPI)set are determined for the difference system between the nominal and disturbed observer error systems. Further, the global uniform asymptotical stability of the observer error system is established in the sense of converging to the asynchronous MPDT GRPI set, i.e., the cross section of the tube of the observer error system. Finally, the proposed results are validated on a space robot manipulator example.展开更多
In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to d...In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.展开更多
Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems wit...Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
A new concept is presented to express the damping property of linear time-invariant systems, by the Lyapunov theorem in view of quadratic form-defined energy. Two definitions are introduced: damping energy function D(...A new concept is presented to express the damping property of linear time-invariant systems, by the Lyapunov theorem in view of quadratic form-defined energy. Two definitions are introduced: damping energy function D(X_0, X)=Ci∫_(x_0, x) x_idx_(i-1)and comprehensive damping coefficient η-min(Ci/a_(n-i)). It is concluded that (ⅰ) of the Hurwitz determinants, △_(x-1) is proportional to the damping effect of oscillating systems, (ⅱ) the comprehensive damping coefficients of linear time-invariant systems are derived as. piecewise rational fractions which can be easily calculated and (ⅲ) the damping torque coefficient obtained for synchronous machines is independent of ω.展开更多
This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “com...This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process.展开更多
对中国临夏台2013年至2014年两年的井水位和四分量钻孔应变资料进行了预处理以消除趋势与突跳.根据文献(Means,1982;Young and Budynas,2005),相互正交的两条测线的应变观测值之和等于面应变.文献(刘序俨等,1988)证明近地表的面应变的2/...对中国临夏台2013年至2014年两年的井水位和四分量钻孔应变资料进行了预处理以消除趋势与突跳.根据文献(Means,1982;Young and Budynas,2005),相互正交的两条测线的应变观测值之和等于面应变.文献(刘序俨等,1988)证明近地表的面应变的2/3等于体应变,因此,可由4分量钻孔应变观测值得到钻孔体应变,然后根据体应变与井水位观测资料,从时域和频域对该钻孔系统的性质进行了论证.结果表明,在时域,体应变与井水位高度负相关.钻孔系统的灵敏度为—0.1620mm/10-9.把两年中的某两个月份的两者时间坐标轴和纵轴比例尺放大,发现井水位曲线的峰/谷与体应变观测曲线的谷/峰一一对应,两者的相位滞后非常小.在频域内,本文采用Venedikov调和分析方法分别取得了井水位与体应变9个月的半日波与全日波数个波群的逐月潮汐因子与相位滞后,然后作简单计算,得到了钻孔系统对上述波群的灵敏度与相位滞后.结果表明9个月中大多数波群的灵敏度不但十分相近,且非常接近由时域得到的周年频率分量的灵敏度,但相位滞后误差较大,本文对此进行了分析,认为由反正切得到的相位滞后受计算误差影响较大,应以时域经审视所得的相位滞后接近于零为准.通过时域与频域的分析,表明井水位对体应变的响应基本是线性时不变的,论证了临夏台钻孔系统基本上满足了叠加性、齐次性与时不变性,基本上为一线性时不变系统.展开更多
文摘In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.
文摘This paper proposes a method to ascertain the stability of two dimensional linear time invariant discrete system within the shifted unit circle which is represented by the form of characteristic equation. Further an equivalent single dimensional characteristic equation is formed from the two dimensional characteristic equation then the stability formulation in the left half of Z-plane, where the roots of characteristic equation f(Z) = 0 should lie within the shifted unit circle. The coefficient of the unit shifted characteristic equation is suitably arranged in the form of matrix and the inner determinants are evaluated using proposed Jury’s concept. The proposed stability technique is simple and direct. It reduces the computational cost. An illustrative example shows the applicability of the proposed scheme.
基金Supported by the National Natural Science Foundation of China(61605218)National Defense Science and Technology Innovation Foundation of Chinese Academy of Sciences(CXJJ-17S023)
文摘In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.
基金supported in part by the National Defense Basic Scientific Research Program of China(JCKY2018603C015)Cultivation Plan of Major Research Program of Harbin Institute of Technology(ZDXMPY20180101)
文摘This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nominal observer error system under mode-dependent persistent dwell-time(MPDT)switching are first established. Taking the disturbances into account, a novel asynchronous MPDT robust positive invariant(RPI) set and an asynchronous MPDT generalized RPI(GRPI)set are determined for the difference system between the nominal and disturbed observer error systems. Further, the global uniform asymptotical stability of the observer error system is established in the sense of converging to the asynchronous MPDT GRPI set, i.e., the cross section of the tube of the observer error system. Finally, the proposed results are validated on a space robot manipulator example.
基金This work was supported was supported in part by the European Union under grant NeCST.
文摘In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.
文摘Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61573332,61601431)Fundamental Research Funds for the Central Universities(WK2100100028)
文摘A new concept is presented to express the damping property of linear time-invariant systems, by the Lyapunov theorem in view of quadratic form-defined energy. Two definitions are introduced: damping energy function D(X_0, X)=Ci∫_(x_0, x) x_idx_(i-1)and comprehensive damping coefficient η-min(Ci/a_(n-i)). It is concluded that (ⅰ) of the Hurwitz determinants, △_(x-1) is proportional to the damping effect of oscillating systems, (ⅱ) the comprehensive damping coefficients of linear time-invariant systems are derived as. piecewise rational fractions which can be easily calculated and (ⅲ) the damping torque coefficient obtained for synchronous machines is independent of ω.
文摘This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process.
文摘对中国临夏台2013年至2014年两年的井水位和四分量钻孔应变资料进行了预处理以消除趋势与突跳.根据文献(Means,1982;Young and Budynas,2005),相互正交的两条测线的应变观测值之和等于面应变.文献(刘序俨等,1988)证明近地表的面应变的2/3等于体应变,因此,可由4分量钻孔应变观测值得到钻孔体应变,然后根据体应变与井水位观测资料,从时域和频域对该钻孔系统的性质进行了论证.结果表明,在时域,体应变与井水位高度负相关.钻孔系统的灵敏度为—0.1620mm/10-9.把两年中的某两个月份的两者时间坐标轴和纵轴比例尺放大,发现井水位曲线的峰/谷与体应变观测曲线的谷/峰一一对应,两者的相位滞后非常小.在频域内,本文采用Venedikov调和分析方法分别取得了井水位与体应变9个月的半日波与全日波数个波群的逐月潮汐因子与相位滞后,然后作简单计算,得到了钻孔系统对上述波群的灵敏度与相位滞后.结果表明9个月中大多数波群的灵敏度不但十分相近,且非常接近由时域得到的周年频率分量的灵敏度,但相位滞后误差较大,本文对此进行了分析,认为由反正切得到的相位滞后受计算误差影响较大,应以时域经审视所得的相位滞后接近于零为准.通过时域与频域的分析,表明井水位对体应变的响应基本是线性时不变的,论证了临夏台钻孔系统基本上满足了叠加性、齐次性与时不变性,基本上为一线性时不变系统.