The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved b...A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.展开更多
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc...A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.展开更多
The stabilization problem of linear time-varying systems with both state and input constraints is considered. Sufficient conditions for the existence of the solution to this problem are derived and a gain-switched(ga...The stabilization problem of linear time-varying systems with both state and input constraints is considered. Sufficient conditions for the existence of the solution to this problem are derived and a gain-switched(gain-scheduled) state feedback control scheme is built to stabilize the constrained timevarying system. The design problem is transformed to a series of convex feasibility problems which can be solved efficiently. A design example is given to illustrate the effect of the proposed algorithm.展开更多
In order to improve the performance of linear time-varying(LTV)channel estimation,based on the sparsity of channel taps in time domain,a sparse recovery method of LTV channel in orthogonal frequency division multipl...In order to improve the performance of linear time-varying(LTV)channel estimation,based on the sparsity of channel taps in time domain,a sparse recovery method of LTV channel in orthogonal frequency division multiplexing(OFDM)system is proposed.Firstly,based on the compressive sensing theory,the average of the channel taps over one symbol duration in the LTV channel model is estimated.Secondly,in order to deal with the inter-carrier interference(ICI),the group-pilot design criterion is used based on the minimization of mutual coherence of the measurement.Finally,an efficient pilot pattern optimization algorithm is proposed by a dual layer loops iteration.The simulation results show that the new method uses less pilots,has a smaller bit error ratio(BER),and greater ability to deal with Doppler frequency shift than the traditional method does.展开更多
The optimal control problem was studied for linear time-varying systems,which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of d...The optimal control problem was studied for linear time-varying systems,which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of disturbances in an optimal fashion,we obtained a new feedforward and feedback optimal control law and gave the control algorithm by solving a Riccati differential equation and a matrix differential equation. Simulation results showed that the achieved optimal control law was realizable,efficient and robust to reject the external disturbances.展开更多
Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condit...Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.展开更多
An efficient algorithm for the representation and approximation of linear time-varying systems is presented via the fast real-valued discrete Gabor transform. Compared with the existing algorithm based on the traditio...An efficient algorithm for the representation and approximation of linear time-varying systems is presented via the fast real-valued discrete Gabor transform. Compared with the existing algorithm based on the traditional complex-valued discrete Gabor transform, the proposed algorithm runs faster, can more easily be implemented in software or hardware, and leads to a more compact representation. Simulation results are given for demonstration.展开更多
By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identific...By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identification applications. The simulation results indicate that the method is not only capable of following the changing parameters of the system, but also has improved the identification accuracy compared with that using the least square method.展开更多
A wavelet based identification method for linear time-varying systems is presented,and the ridge and skeleton of the continuous wavelet transform of free response is used to extract time-varying parameters. The stiffn...A wavelet based identification method for linear time-varying systems is presented,and the ridge and skeleton of the continuous wavelet transform of free response is used to extract time-varying parameters. The stiffness and damping coefficients of single-degree-of—freedom systems,frequencies and damping ratios of multi-degree-of-freedom systems are estimated without any prior information of systems. The proposed method is applied to linear time-varying systems with both abrupt and smooth variation parameters. Gaussian white noise is added to the response to test the anti-noise performance of the algorithm. The simulation results show that the proposed method is capable of accurately tracking the variation of the systems.展开更多
The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedfo...The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.展开更多
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system mo...The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.展开更多
The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state an...The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].展开更多
Due to the appearance and the study of the ornithopter and flexible-wing micro air vehicles, etc., the time-varying systems become more and more important and ubiquitous in the study of the mechanics. In this letter, ...Due to the appearance and the study of the ornithopter and flexible-wing micro air vehicles, etc., the time-varying systems become more and more important and ubiquitous in the study of the mechanics. In this letter, the sufficient conditions of the uniform asymptotic stability are first presented for the delayed time-varying linear differential equations with any time delay by employing the Dini derivative, Lozinskii measure and the generalized scalar Halanay delayed differential inequality. They are especially based on the estimation of the arbitrary solutions but not the fundamental solution matrix since their solutions' space is infinite-dimensional. Then some sufficient conditions of the stability, asymptotic stability and uniform asymptotic stability of the delayed time-varying linear system with a sufficiently small time delay are reported by employing Taylor expansion and Dini derivative. It implies that these stabilities can be guaranteed by the Lozinskii measure of the matrix composing of the time delay and the coefficient matrices of the system.展开更多
This paper proposes the design and a comparative study of two nonlinear systems modeling techniques. These two approaches are developed to address a class of nonlinear systems with time-varying parameter. The first is...This paper proposes the design and a comparative study of two nonlinear systems modeling techniques. These two approaches are developed to address a class of nonlinear systems with time-varying parameter. The first is a Radial Basis Function (RBF) neural networks and the second is a Multi Layer Perceptron (MLP). The MLP model consists of an input layer, an output layer and usually one or more hidden layers. However, training MLP network based on back propagation learning is computationally expensive. In this paper, an RBF network is called. The parameters of the RBF model are optimized by two methods: the Gradient Descent (GD) method and Genetic Algorithms (GA). However, the MLP model is optimized by the Gradient Descent method. The performance of both models are evaluated first by using a numerical simulation and second by handling a chemical process known as the Continuous Stirred Tank Reactor CSTR. It has been shown that in both validation operations the results were successful. The optimized RBF model by Genetic Algorithms gave the best results.展开更多
An iterative learning control algorithm based on shifted Legendre orthogonal polynomials is proposed to address the terminal control problem of linear time-varying systems. First, the method parameterizes a linear tim...An iterative learning control algorithm based on shifted Legendre orthogonal polynomials is proposed to address the terminal control problem of linear time-varying systems. First, the method parameterizes a linear time-varying system by using shifted Legendre polynomials approximation. Then, an approximated model for the linear time-varying system is deduced by employing the orthogonality relations and boundary values of shifted Legendre polynomials. Based on the model, the shifted Legendre polynomials coefficients of control function are iteratively adjusted by an optimal iterative learning law derived. The algorithm presented can avoid solving the state transfer matrix of linear time-varying systems. Simulation results illustrate the effectiveness of the proposed method.展开更多
This research paper addresses a topic of interest to many researchers and engineers due to its effective applications in various industrial areas.It focuses on the thermoelastic laminated beam model with nonlinear str...This research paper addresses a topic of interest to many researchers and engineers due to its effective applications in various industrial areas.It focuses on the thermoelastic laminated beam model with nonlinear structural damping,nonlinear time-varying delay,and microtemperature effects.Our primary goal is to establish the stability of the solution.To achieve this,and under suitable hypotheses,we demonstrate energy decay and construct a Lyapunov functional that leads to our results.展开更多
In this paper,we introduce TianXing,a transformer-based data-driven model designed with physical augmentation for skillful and efficient global weather forecasting.Previous data-driven transformer models such as Pangu...In this paper,we introduce TianXing,a transformer-based data-driven model designed with physical augmentation for skillful and efficient global weather forecasting.Previous data-driven transformer models such as Pangu-Weather,FengWu,and FuXi have emerged as promising alternatives for numerical weather prediction in weather forecasting.However,these models have been characterized by their substantial computational resource consumption during training and limited incorporation of explicit physical guidance in their modeling frameworks.In contrast,TianXing applies a linear complexity mechanism that ensures proportional scalability with input data size while significantly diminishing GPU resource demands,with only a marginal compromise in accuracy.Furthermore,TianXing proposes an explicit attention decay mechanism in the linear attention derived from physical insights to enhance its forecasting skill.The mechanism can reweight attention based on Earth's spherical distances and learned sparse multivariate coupling relationships,promptingTianXing to prioritize dynamically relevant neighboring features.Finally,to enhance its performance in mediumrange forecasting,TianXing employs a stacked autoregressive forecast algorithm.Validation of the model's architecture is conducted using ERA5 reanalysis data at a 5.625°latitude-longitude resolution,while a high-resolution dataset at 0.25°is utilized for training the actual forecasting model.Notably,the TianXing exhibits excellent performance,particularly in the Z500(geopotential height)and T850(temperature)fields,surpassing previous data-driven models and operational fullresolution models such as NCEP GFS and ECMWF IFS,as evidenced by latitude-weighted RMSE and ACC metrics.Moreover,the TianXing has demonstrated remarkable capabilities in predicting extreme weather events,such as typhoons.展开更多
In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the...In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.展开更多
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
基金supported by the National Natural Science Foundation of China (60474015)Program for Changjiang Scholars and Innovative Research Team in University
文摘A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.
基金Supported by the National Natural Science Foundation of China (60404012, 60674064), UK EPSRC (GR/N13319 and GR/R10875), the National High Technology Research and Development Program of China (2007AA04Z193), New Star of Science and Technology of Beijing City (2006A62), and IBM China Research Lab 2007 UR-Program.
文摘A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.
基金supported by the National Natural Science Foundation of China(6132106261503100)the China Postdoctoral Science Foundation(2014M550189)
文摘The stabilization problem of linear time-varying systems with both state and input constraints is considered. Sufficient conditions for the existence of the solution to this problem are derived and a gain-switched(gain-scheduled) state feedback control scheme is built to stabilize the constrained timevarying system. The design problem is transformed to a series of convex feasibility problems which can be solved efficiently. A design example is given to illustrate the effect of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(61571368)the Ministerial Level Advanced Research Foundation(950303HK,C9149C0511)
文摘In order to improve the performance of linear time-varying(LTV)channel estimation,based on the sparsity of channel taps in time domain,a sparse recovery method of LTV channel in orthogonal frequency division multiplexing(OFDM)system is proposed.Firstly,based on the compressive sensing theory,the average of the channel taps over one symbol duration in the LTV channel model is estimated.Secondly,in order to deal with the inter-carrier interference(ICI),the group-pilot design criterion is used based on the minimization of mutual coherence of the measurement.Finally,an efficient pilot pattern optimization algorithm is proposed by a dual layer loops iteration.The simulation results show that the new method uses less pilots,has a smaller bit error ratio(BER),and greater ability to deal with Doppler frequency shift than the traditional method does.
基金the National Natural Science Foundation of China (Grant No.60074001)the Natural Science Foundation of Shandong Province (Grant No.Y2000G02).
文摘The optimal control problem was studied for linear time-varying systems,which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of disturbances in an optimal fashion,we obtained a new feedforward and feedback optimal control law and gave the control algorithm by solving a Riccati differential equation and a matrix differential equation. Simulation results showed that the achieved optimal control law was realizable,efficient and robust to reject the external disturbances.
文摘Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.
基金Supported by the Excellent Young Teachers Program of the Ministry of Education, P. R. China (No. 2001-1739 and No. 2003-145)
文摘An efficient algorithm for the representation and approximation of linear time-varying systems is presented via the fast real-valued discrete Gabor transform. Compared with the existing algorithm based on the traditional complex-valued discrete Gabor transform, the proposed algorithm runs faster, can more easily be implemented in software or hardware, and leads to a more compact representation. Simulation results are given for demonstration.
文摘By applying genetic algorithms (GA) to on-line identification of linear time-varying systems; a number of modifications are made to the Simple Genetic Algorithm to improve the performance of the algorithm in identification applications. The simulation results indicate that the method is not only capable of following the changing parameters of the system, but also has improved the identification accuracy compared with that using the least square method.
文摘A wavelet based identification method for linear time-varying systems is presented,and the ridge and skeleton of the continuous wavelet transform of free response is used to extract time-varying parameters. The stiffness and damping coefficients of single-degree-of—freedom systems,frequencies and damping ratios of multi-degree-of-freedom systems are estimated without any prior information of systems. The proposed method is applied to linear time-varying systems with both abrupt and smooth variation parameters. Gaussian white noise is added to the response to test the anti-noise performance of the algorithm. The simulation results show that the proposed method is capable of accurately tracking the variation of the systems.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.
基金Supported by the China Scholarship Council,National Natural Science Foundation of China(Grant No.11402022)the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office(DYSCO)+1 种基金the Fund for Scientific Research–Flanders(FWO)the Research Fund KU Leuven
文摘The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
基金Project(12511109) supported by the Science and Technology Studies Foundation of Heilongjiang Educational Committee of 2011, China
文摘The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].
基金Supported by National High Technology Research and Development Program (863 Program) (2007AA04Z179), National Natural Science Foundation of China (60774044), and Professional Research Foundation forhdvaneed Talents of Jiangsu University (07JDG037)
基金supported by the National Natural Science Foundation of China(10702065 and 11372282)
文摘Due to the appearance and the study of the ornithopter and flexible-wing micro air vehicles, etc., the time-varying systems become more and more important and ubiquitous in the study of the mechanics. In this letter, the sufficient conditions of the uniform asymptotic stability are first presented for the delayed time-varying linear differential equations with any time delay by employing the Dini derivative, Lozinskii measure and the generalized scalar Halanay delayed differential inequality. They are especially based on the estimation of the arbitrary solutions but not the fundamental solution matrix since their solutions' space is infinite-dimensional. Then some sufficient conditions of the stability, asymptotic stability and uniform asymptotic stability of the delayed time-varying linear system with a sufficiently small time delay are reported by employing Taylor expansion and Dini derivative. It implies that these stabilities can be guaranteed by the Lozinskii measure of the matrix composing of the time delay and the coefficient matrices of the system.
文摘This paper proposes the design and a comparative study of two nonlinear systems modeling techniques. These two approaches are developed to address a class of nonlinear systems with time-varying parameter. The first is a Radial Basis Function (RBF) neural networks and the second is a Multi Layer Perceptron (MLP). The MLP model consists of an input layer, an output layer and usually one or more hidden layers. However, training MLP network based on back propagation learning is computationally expensive. In this paper, an RBF network is called. The parameters of the RBF model are optimized by two methods: the Gradient Descent (GD) method and Genetic Algorithms (GA). However, the MLP model is optimized by the Gradient Descent method. The performance of both models are evaluated first by using a numerical simulation and second by handling a chemical process known as the Continuous Stirred Tank Reactor CSTR. It has been shown that in both validation operations the results were successful. The optimized RBF model by Genetic Algorithms gave the best results.
基金Supported by National Natural Science Foundation of P. R. China (60474049)
文摘An iterative learning control algorithm based on shifted Legendre orthogonal polynomials is proposed to address the terminal control problem of linear time-varying systems. First, the method parameterizes a linear time-varying system by using shifted Legendre polynomials approximation. Then, an approximated model for the linear time-varying system is deduced by employing the orthogonality relations and boundary values of shifted Legendre polynomials. Based on the model, the shifted Legendre polynomials coefficients of control function are iteratively adjusted by an optimal iterative learning law derived. The algorithm presented can avoid solving the state transfer matrix of linear time-varying systems. Simulation results illustrate the effectiveness of the proposed method.
文摘This research paper addresses a topic of interest to many researchers and engineers due to its effective applications in various industrial areas.It focuses on the thermoelastic laminated beam model with nonlinear structural damping,nonlinear time-varying delay,and microtemperature effects.Our primary goal is to establish the stability of the solution.To achieve this,and under suitable hypotheses,we demonstrate energy decay and construct a Lyapunov functional that leads to our results.
基金supported in part by the Meteorological Joint Funds of the National Natural Science Foundation of China under Grant U2142211in part by the National Natural Science Foundation of China under Grant 42075141,42341202+2 种基金in part by the National Key Research and Development Program of China under Grant 2020YFA0608000in part by the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities。
文摘In this paper,we introduce TianXing,a transformer-based data-driven model designed with physical augmentation for skillful and efficient global weather forecasting.Previous data-driven transformer models such as Pangu-Weather,FengWu,and FuXi have emerged as promising alternatives for numerical weather prediction in weather forecasting.However,these models have been characterized by their substantial computational resource consumption during training and limited incorporation of explicit physical guidance in their modeling frameworks.In contrast,TianXing applies a linear complexity mechanism that ensures proportional scalability with input data size while significantly diminishing GPU resource demands,with only a marginal compromise in accuracy.Furthermore,TianXing proposes an explicit attention decay mechanism in the linear attention derived from physical insights to enhance its forecasting skill.The mechanism can reweight attention based on Earth's spherical distances and learned sparse multivariate coupling relationships,promptingTianXing to prioritize dynamically relevant neighboring features.Finally,to enhance its performance in mediumrange forecasting,TianXing employs a stacked autoregressive forecast algorithm.Validation of the model's architecture is conducted using ERA5 reanalysis data at a 5.625°latitude-longitude resolution,while a high-resolution dataset at 0.25°is utilized for training the actual forecasting model.Notably,the TianXing exhibits excellent performance,particularly in the Z500(geopotential height)and T850(temperature)fields,surpassing previous data-driven models and operational fullresolution models such as NCEP GFS and ECMWF IFS,as evidenced by latitude-weighted RMSE and ACC metrics.Moreover,the TianXing has demonstrated remarkable capabilities in predicting extreme weather events,such as typhoons.
基金supported by National Basic Research Program of China(973 Program)(No.2012CB316400)National Natural Science Foundation of China(Nos.61171034 and 61273134)
文摘In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.