In order to improve the breeding effect of livestock, the data were read from an Excel file with Active Server Page (ASP) programs, and the breeding values of breeding stock were calculated by best linear unbiased p...In order to improve the breeding effect of livestock, the data were read from an Excel file with Active Server Page (ASP) programs, and the breeding values of breeding stock were calculated by best linear unbiased prediction (BLUP) method.展开更多
In the current paper,the best linear unbiased estimators(BLUEs)of location and scale parameters from location-scale family will be respectively proposed in cases when one parameter is known and when both are unknown u...In the current paper,the best linear unbiased estimators(BLUEs)of location and scale parameters from location-scale family will be respectively proposed in cases when one parameter is known and when both are unknown under moving extremes ranked set sampling(MERSS).Explicit mathematical expressions of these estimators and their variances are derived.Their relative efficiencies with respect to the minimum variance unbiased estimators(MVUEs)under simple random sampling(SRS)are compared for the cases of some usual distributions.The numerical results show that the BLUEs under MERSS are significantly more efficient than the MVUEs under SRS.展开更多
In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in ter...In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.展开更多
In target tracking applications,the Doppler measurement contains information of the target range rate,which has the potential capability to improve the tracking performance.However,the nonlinear degree between the mea...In target tracking applications,the Doppler measurement contains information of the target range rate,which has the potential capability to improve the tracking performance.However,the nonlinear degree between the measurement and the target state increases with the introduction of the Doppler measurement.Therefore,target tracking in the Doppler radar is a nonlinear filtering problem.In order to handle this problem,the Kalman filter form of best linear unbiased estimation(BLUE)with position measurements is proposed,which is combined with the sequential filtering algorithm to handle the Doppler measurement further,where the statistic characteristic of the converted measurement error is calculated based on the predicted information in the sequential filter.Moreover,the algorithm is extended to the maneuvering target tracking case,where the interacting multiple model(IMM)algorithm is used as the basic framework and the model probabilities are updated according to the BLUE position filter and the sequential filter,and the final estimation is a weighted sum of the outputs from the sequential filters and the model probabilities.Simulation results show that compared with existing approaches,the proposed algorithm can realize target tracking with preferable tracking precision and the extended method can achieve effective maneuvering target tracking.展开更多
In this article, the Bayes linear unbiased estimator (BALUE) of parameters is derived for the multivariate linear models. The superiorities of the BALUE over the least square estimator (LSE) is studied in terms of...In this article, the Bayes linear unbiased estimator (BALUE) of parameters is derived for the multivariate linear models. The superiorities of the BALUE over the least square estimator (LSE) is studied in terms of the mean square error matrix (MSEM) criterion and Bayesian Pitman closeness (PC) criterion.展开更多
Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed...Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed by McIntyre[1952.A method for unbiased selective sampling,using ranked sets.Australian Journal of Agricultural Research 3,385-390]as an effective way to estimate the pasture mean.In the current paper,a modification of ranked set sampling called moving extremes ranked set sampling(MERSS)is considered for the best linear unbiased estimators(BLUEs)for the simple linear regression model.The BLUEs for this model under MERSS are derived.The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling.展开更多
Objectives: The objective is to analyze the interaction of the correlation structure and values of the regressor variables in the estimation of a linear model when there is a constant, possibly negative, intra-class c...Objectives: The objective is to analyze the interaction of the correlation structure and values of the regressor variables in the estimation of a linear model when there is a constant, possibly negative, intra-class correlation of residual errors and the group sizes are equal. Specifically: 1) How does the variance of the generalized least squares (GLS) estimator (GLSE) depend on the regressor values? 2) What is the bias in estimated variances when ordinary least squares (OLS) estimator is used? 3) In what cases are OLS and GLS equivalent. 4) How can the best linear unbiased estimator (BLUE) be constructed when the covariance matrix is singular? The purpose is to make general matrix results understandable. Results: The effects of the regressor values can be expressed in terms of the intra-class correlations of the regressors. If the intra-class correlation of residuals is large, then it is beneficial to have small intra-class correlations of the regressors, and vice versa. The algebraic presentation of GLS shows how the GLSE gives different weight to the between-group effects and the within-group effects, in what cases OLSE is equal to GLSE, and how BLUE can be constructed when the residual covariance matrix is singular. Different situations arise when the intra-class correlations of the regressors get their extreme values or intermediate values. The derivations lead to BLUE combining OLS and GLS weighting in an estimator, which can be obtained also using general matrix theory. It is indicated how the analysis can be generalized to non-equal group sizes. The analysis gives insight to models where between-group effects and within-group effects are used as separate regressors.展开更多
In this paper, we derive the distributions of concomitants of record values from generalized Farlie-Gumbel-Morgenstern family of bivariate distributions. We derive the single and the product moments of the concomitant...In this paper, we derive the distributions of concomitants of record values from generalized Farlie-Gumbel-Morgenstern family of bivariate distributions. We derive the single and the product moments of the concomitants for the general case. The results are then applied to the ease of the two-parameter exponential marginal distributions. Using concomitants of record values we derive the best linear unbiased estimators of parameters of the marginal distributions. Moreover, two methods for obtaining predictors of concomitants of record values are presented. Finally, a numerical illustration is performed to highlight the theoretical results obtained.展开更多
To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-envi...To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-environment interaction(GGE)biplot—was conducted in this study.The diameter at breast height of 36 open-pollinated(OP)families of Pinus taeda at six sites in South China was used as a raw dataset.The best linear unbiased prediction(BLUP)data of all individual trees in each site was obtained by fitting the spatial effects with the FA method from raw data.The raw data and BLUP data were analyzed and compared by using the AMMI and GGE biplot.BLUP results showed that the six sites were heterogeneous and spatial variation could be effectively fitted by spatial analysis with the FA method.AMMI analysis identified that two datasets had highly significant effects on the site,family,and their interactions,while BLUP data had a smaller residual error,but higher variation explaining ability and more credible stability than raw data.GGE biplot results revealed that raw data and BLUP data had different results in mega-environment delineation,test-environment evaluation,and genotype evaluation.In addition,BLUP data results were more reasonable due to the stronger analytical ability of the first two principal components.Our study suggests that the compound method combing the FA method with the AMMI and GGE biplot could improve the analysis result of MET data in Pinus teada as it was more reliable than direct AMMI and GGE biplot analysis on raw data.展开更多
In statistical parameter estimation problems,how well the parameters are estimated largely depends on the sampling design used.In the current paper,a modification of ranked set sampling(RSS)called moving extremes RSS(...In statistical parameter estimation problems,how well the parameters are estimated largely depends on the sampling design used.In the current paper,a modification of ranked set sampling(RSS)called moving extremes RSS(MERSS)is considered for the estimation of the scale and shape parameters for the log-logistic distribution.Several traditional estimators and ad hoc estimators will be studied under MERSS.The estimators under MERSS are compared to the corresponding ones under SRS.The simulation results show that the estimators under MERSS are significantly more efficient than the ones under SRS.展开更多
Inertial measurement unit (IMU) is a standard motion sensor in modern airborne SAR systems. But how to remove its systematic error is a difficult problem, which impacts the improvement of resolution in azimuth. The te...Inertial measurement unit (IMU) is a standard motion sensor in modern airborne SAR systems. But how to remove its systematic error is a difficult problem, which impacts the improvement of resolution in azimuth. The technique of motion compensation presented in this paper, uses the GPS as a reference system to estimate and correct the systematic error of the IMU on the concept of linear unbiased minimum variance (LUMV). This new and effective method achieves very accurate position measurement (both high and low frequency) of the APC in not only short but also long terms, so that it can satisfy the requirement of high resolution airborne SAR. In the last section of the paper, some experimental simulations from raw data are given.展开更多
Initial flowering date(IFD)is closely related to mature period of peanut pods.In present study,a population of recombinant inbred lines(RIL)derived from the cross between Silihong(female parent)and Jinonghei 3(male pa...Initial flowering date(IFD)is closely related to mature period of peanut pods.In present study,a population of recombinant inbred lines(RIL)derived from the cross between Silihong(female parent)and Jinonghei 3(male parent)was used to map QTLs associated with IFD.The RIL population and its two parental cultivars were planted in two locations of Hebei Province,China from 2015 to 2018(eight environments).Based on a high-density genetic linkage map(including 2996 SNP and 330 SSR markers)previously constructed in our laboratory,QTLs were analyzed using phenotypic data and the best linear unbiased prediction(BLUP)value of initial flowering date by inclusive composite interval mapping(ICIM)method.Interaction effects between every two QTLs and between individual QTL and environment were also analyzed.In cultivated peanut,IFD was affected by genotypic factor and environments simultaneously,and its broad sense heritability(h2)was estimated as 86.8%。Using the IFD phenotypic data from the eight environments,a total of 19 QTLs for IFD were detected,and the phenotypic variation explained(PVE)by each QTL ranged from 1.15 to 21.82%.Especially,five of them were also detected by the BLUP value of IFD.In addition,12 additive QTLs and 35 pairs of epistatic QTLs(62 loci involved)were identifed by the joint analysis of IFD across eight environments.Three QTLs(qIFDB04.1,qIFDB07.1 and qIFDB08.1)located on chromosome B04,B07 and B08 were identified as main-effect QTL for IFD,which had the most potential to be used in peanut breeding.This study would be helpful for the early-maturity and adaptability breeding in cultivated peanut.展开更多
Grain size plays a significant role in rice,starting from affecting yield to consumer preference,which is the driving force for deep investigation and improvement of grain size characters.Quantitative inheritance make...Grain size plays a significant role in rice,starting from affecting yield to consumer preference,which is the driving force for deep investigation and improvement of grain size characters.Quantitative inheritance makes these traits complex to breed on account of several alleles contributing to the complete trait expression.We employed genome-wide association study in an association panel of 88 rice genotypes using 142 new candidate gene based SSR(cgSSR)markers,derived from yield-related candidate genes,with the efficient mixed-model association coupled mixed linear model for dissecting complete genetic control of grain size traits.A total of 10 significant associations were identified for four grain size-related characters(grain weight,grain length,grain width,and length-width ratio).Among the identified associations,seven marker trait associations explain more than 10%of the phenotypic variation,indicating major putative QTLs for respective traits.The allelic variations at genes OsBC1L4,SHO1 and OsD2 showed association between 1000-grain weight and grain width,1000-grain weight and grain length,and grain width and length-width ratio,respectively.The cgSSR markers,associated with corresponding traits,can be utilized for direct allelic selection,while other significantly associated cgSSRs may be utilized for allelic accumulation in the breeding programs or grain size improvement.The new cgSSR markers associated with grain size related characters have a significant impact on practical plant breeding to increase the number of causative alleles for these traits through marker aided rice breeding programs.展开更多
In the current paper,we considered the Fisher information matrix from the generalized Rayleigh distribution(GR)distribution in ranked set sampling(RSS).The numerical results show that the ranked set sample carries mor...In the current paper,we considered the Fisher information matrix from the generalized Rayleigh distribution(GR)distribution in ranked set sampling(RSS).The numerical results show that the ranked set sample carries more information about λ and α than a simple random sample of equivalent size.In order to give more insight into the performance of RSS with respect to(w.r.t.)simple random sampling(SRS),a modified unbiased estimator and a modified best linear unbiased estimator(BLUE)of scale and shape λ and α from GR distribution in SRS and RSS are studied.The numerical results show that the modified unbiased estimator and the modified BLUE of λ and α in RSS are significantly more efficient than the ones in SRS.展开更多
Eldana saccharina is the most damaging stem borer of sugarcane in South Africa causing US$90 million losses of revenue annually. The breeding strategy at the South African Sugarcane Research Institute is based on eval...Eldana saccharina is the most damaging stem borer of sugarcane in South Africa causing US$90 million losses of revenue annually. The breeding strategy at the South African Sugarcane Research Institute is based on evaluating parents for breeding values using progeny data derived from family plots and selecting parents with high breeding values for crossing. Family selection entails selecting whole populations of progenies based on family mean. The objective of this study was to evaluate the contribution of family selection to eldana resistance breeding. Data were collected from stage 1 (seedlings stage) trials. In each plot, stalks were examined for eldana entry and exit holes and stalks with borings were counted. The number of bored stalks was expressed as a percent of total stalks and subjected to analysis of variance. The family broad sense heritabilities ranged from 0.51 - 0.56 compared with 0.17 for Individual Genotype Selection (IGS). Predicted family selection gains ranged from 20% to 69% compared with 18% for IGS indicating the value of family selection. Female parental effects F-values (1.63 - 2.01) were significant (P = 0.0017 - 0.0041) compared with non-significant male F-values (1.33 - 1.41) and (P = 0.088 - 0.1464) suggesting maternal effects. Crossing parents with higher resistance such as 96M0058 × 94M0017, 87M0965 × 98G1166 and 97M0653 × 94M0017 produced significantly (P < 0.05) fewer bored stalks compared with those showing lower resistance (96H0590 × 95H0167, 94F2694 × 86F3326 and 76L1295 × 91L1492) suggesting additive genetic effects and that recurrent selection will be an effective breeding method.展开更多
In recent years,Kriging model has gained wide popularity in various fields such as space geology,econometrics,and computer experiments.As a result,research on this model has proliferated.In this paper,the authors prop...In recent years,Kriging model has gained wide popularity in various fields such as space geology,econometrics,and computer experiments.As a result,research on this model has proliferated.In this paper,the authors propose a model averaging estimation based on the best linear unbiased prediction of Kriging model and the leave-one-out cross-validation method,with consideration for the model uncertainty.The authors present a weight selection criterion for the model averaging estimation and provide two theoretical justifications for the proposed method.First,the estimated weight based on the proposed criterion is asymptotically optimal in achieving the lowest possible prediction risk.Second,the proposed method asymptotically assigns all weights to the correctly specified models when the candidate model set includes these models.The effectiveness of the proposed method is verified through numerical analyses.展开更多
Consider the partitioned linear regression model and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2 V, where σ2 is an unknown pos...Consider the partitioned linear regression model and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2 V, where σ2 is an unknown positive scalar, V is an n × n known symmetric nonnegative definite matrix, X = (X 1 : X 2) is an n×(p+q) known design matrix with rank(X) = r ≤ (p+q), and β = (β′ 1: β′2 )′ with β1 and β2 being p×1 and q×1 vectors of unknown parameters, respectively. In this article the formulae for the differences between the best linear unbiased estimators of M 2 X 1β1under the model and its best linear unbiased estimators under the reduced linear models of are given, where M 2 = I -X 2 X 2 + . Furthermore, the necessary and sufficient conditions for the equalities between the best linear unbiased estimators of M 2 X 1β1 under the model and those under its reduced linear models are established. Lastly, we also study the connections between the model and its linear transformation model.展开更多
文摘In order to improve the breeding effect of livestock, the data were read from an Excel file with Active Server Page (ASP) programs, and the breeding values of breeding stock were calculated by best linear unbiased prediction (BLUP) method.
基金supported by National Science Foundation of China (Grant Nos.12261036 and 11901236)Scientific Research Fund of Hunan Provincial Education Department (Grant No.21A0328)+1 种基金Provincial Natural Science Foundation of Hunan (Grant No.2022JJ30469)Young Core Teacher Foundation of Hunan Province (Grant No.[2020]43)。
文摘In the current paper,the best linear unbiased estimators(BLUEs)of location and scale parameters from location-scale family will be respectively proposed in cases when one parameter is known and when both are unknown under moving extremes ranked set sampling(MERSS).Explicit mathematical expressions of these estimators and their variances are derived.Their relative efficiencies with respect to the minimum variance unbiased estimators(MVUEs)under simple random sampling(SRS)are compared for the cases of some usual distributions.The numerical results show that the BLUEs under MERSS are significantly more efficient than the MVUEs under SRS.
基金This research is supported by National Natural Science Foundation of China under Grant Nos. 10801123, 10801124 and 10771204, and the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No. KJCX3-SYW-S02.
文摘In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.
基金This work was supported by the Basic Research Operation Foundation for Central University(ZYGX2016J039).
文摘In target tracking applications,the Doppler measurement contains information of the target range rate,which has the potential capability to improve the tracking performance.However,the nonlinear degree between the measurement and the target state increases with the introduction of the Doppler measurement.Therefore,target tracking in the Doppler radar is a nonlinear filtering problem.In order to handle this problem,the Kalman filter form of best linear unbiased estimation(BLUE)with position measurements is proposed,which is combined with the sequential filtering algorithm to handle the Doppler measurement further,where the statistic characteristic of the converted measurement error is calculated based on the predicted information in the sequential filter.Moreover,the algorithm is extended to the maneuvering target tracking case,where the interacting multiple model(IMM)algorithm is used as the basic framework and the model probabilities are updated according to the BLUE position filter and the sequential filter,and the final estimation is a weighted sum of the outputs from the sequential filters and the model probabilities.Simulation results show that compared with existing approaches,the proposed algorithm can realize target tracking with preferable tracking precision and the extended method can achieve effective maneuvering target tracking.
基金Supported by the National Natural Science Foundation of China (No.10801123,10801124,10771204)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX3-SYW-S02)
文摘In this article, the Bayes linear unbiased estimator (BALUE) of parameters is derived for the multivariate linear models. The superiorities of the BALUE over the least square estimator (LSE) is studied in terms of the mean square error matrix (MSEM) criterion and Bayesian Pitman closeness (PC) criterion.
基金Supported by the National Natural Science Foundation of China(11901236)the Scientific Research Fund of Hunan Provincial Science and Technology Department(2019JJ50479)+3 种基金the Scientific Research Fund of Hunan Provincial Education Department(18B322)the Winning Bid Project of Hunan Province for the 4th National Economic Census([2020]1)the Young Core Teacher Foundation of Hunan Province([2020]43)the Funda-mental Research Fund of Xiangxi Autonomous Prefecture(2018SF5026)。
文摘Cost effective sampling design is a major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time consuming.Ranked set sampling(RSS)was first proposed by McIntyre[1952.A method for unbiased selective sampling,using ranked sets.Australian Journal of Agricultural Research 3,385-390]as an effective way to estimate the pasture mean.In the current paper,a modification of ranked set sampling called moving extremes ranked set sampling(MERSS)is considered for the best linear unbiased estimators(BLUEs)for the simple linear regression model.The BLUEs for this model under MERSS are derived.The BLUEs under MERSS are shown to be markedly more efficient for normal data when compared with the BLUEs under simple random sampling.
文摘Objectives: The objective is to analyze the interaction of the correlation structure and values of the regressor variables in the estimation of a linear model when there is a constant, possibly negative, intra-class correlation of residual errors and the group sizes are equal. Specifically: 1) How does the variance of the generalized least squares (GLS) estimator (GLSE) depend on the regressor values? 2) What is the bias in estimated variances when ordinary least squares (OLS) estimator is used? 3) In what cases are OLS and GLS equivalent. 4) How can the best linear unbiased estimator (BLUE) be constructed when the covariance matrix is singular? The purpose is to make general matrix results understandable. Results: The effects of the regressor values can be expressed in terms of the intra-class correlations of the regressors. If the intra-class correlation of residuals is large, then it is beneficial to have small intra-class correlations of the regressors, and vice versa. The algebraic presentation of GLS shows how the GLSE gives different weight to the between-group effects and the within-group effects, in what cases OLSE is equal to GLSE, and how BLUE can be constructed when the residual covariance matrix is singular. Different situations arise when the intra-class correlations of the regressors get their extreme values or intermediate values. The derivations lead to BLUE combining OLS and GLS weighting in an estimator, which can be obtained also using general matrix theory. It is indicated how the analysis can be generalized to non-equal group sizes. The analysis gives insight to models where between-group effects and within-group effects are used as separate regressors.
文摘In this paper, we derive the distributions of concomitants of record values from generalized Farlie-Gumbel-Morgenstern family of bivariate distributions. We derive the single and the product moments of the concomitants for the general case. The results are then applied to the ease of the two-parameter exponential marginal distributions. Using concomitants of record values we derive the best linear unbiased estimators of parameters of the marginal distributions. Moreover, two methods for obtaining predictors of concomitants of record values are presented. Finally, a numerical illustration is performed to highlight the theoretical results obtained.
基金supported by State Key Laboratory of Tree Genetics and Breeding(Northeast Forestry University)(K2013204)co-financed with NSFC project(31470673)Guangdong Science and Technology Planning Project(2016B070701008)
文摘To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-environment interaction(GGE)biplot—was conducted in this study.The diameter at breast height of 36 open-pollinated(OP)families of Pinus taeda at six sites in South China was used as a raw dataset.The best linear unbiased prediction(BLUP)data of all individual trees in each site was obtained by fitting the spatial effects with the FA method from raw data.The raw data and BLUP data were analyzed and compared by using the AMMI and GGE biplot.BLUP results showed that the six sites were heterogeneous and spatial variation could be effectively fitted by spatial analysis with the FA method.AMMI analysis identified that two datasets had highly significant effects on the site,family,and their interactions,while BLUP data had a smaller residual error,but higher variation explaining ability and more credible stability than raw data.GGE biplot results revealed that raw data and BLUP data had different results in mega-environment delineation,test-environment evaluation,and genotype evaluation.In addition,BLUP data results were more reasonable due to the stronger analytical ability of the first two principal components.Our study suggests that the compound method combing the FA method with the AMMI and GGE biplot could improve the analysis result of MET data in Pinus teada as it was more reliable than direct AMMI and GGE biplot analysis on raw data.
基金the National Natural Science Foundation of China(11901236)Scienti c Research Fund of Hunan Provincial Science and Technology Department(2019JJ50479)+1 种基金Scienti c Research Fund of Hunan Provincial Education Department(18B322)Fundamental Research Fund of Xiangxi Autonomous Prefec-ture(2018SF5026).
文摘In statistical parameter estimation problems,how well the parameters are estimated largely depends on the sampling design used.In the current paper,a modification of ranked set sampling(RSS)called moving extremes RSS(MERSS)is considered for the estimation of the scale and shape parameters for the log-logistic distribution.Several traditional estimators and ad hoc estimators will be studied under MERSS.The estimators under MERSS are compared to the corresponding ones under SRS.The simulation results show that the estimators under MERSS are significantly more efficient than the ones under SRS.
文摘Inertial measurement unit (IMU) is a standard motion sensor in modern airborne SAR systems. But how to remove its systematic error is a difficult problem, which impacts the improvement of resolution in azimuth. The technique of motion compensation presented in this paper, uses the GPS as a reference system to estimate and correct the systematic error of the IMU on the concept of linear unbiased minimum variance (LUMV). This new and effective method achieves very accurate position measurement (both high and low frequency) of the APC in not only short but also long terms, so that it can satisfy the requirement of high resolution airborne SAR. In the last section of the paper, some experimental simulations from raw data are given.
基金Supported by the earmarked fund for China Agriculture Research System(CARS-13)the National Natural Science Foundatlon of China(31771833)+1 种基金the Science and Technology Supporting Plan Project of Hebei Province,China(16226301D)the Key Projects of Science and Technology Research in Higher Education Institution of Hebei Province,China(ZD2015056).
文摘Initial flowering date(IFD)is closely related to mature period of peanut pods.In present study,a population of recombinant inbred lines(RIL)derived from the cross between Silihong(female parent)and Jinonghei 3(male parent)was used to map QTLs associated with IFD.The RIL population and its two parental cultivars were planted in two locations of Hebei Province,China from 2015 to 2018(eight environments).Based on a high-density genetic linkage map(including 2996 SNP and 330 SSR markers)previously constructed in our laboratory,QTLs were analyzed using phenotypic data and the best linear unbiased prediction(BLUP)value of initial flowering date by inclusive composite interval mapping(ICIM)method.Interaction effects between every two QTLs and between individual QTL and environment were also analyzed.In cultivated peanut,IFD was affected by genotypic factor and environments simultaneously,and its broad sense heritability(h2)was estimated as 86.8%。Using the IFD phenotypic data from the eight environments,a total of 19 QTLs for IFD were detected,and the phenotypic variation explained(PVE)by each QTL ranged from 1.15 to 21.82%.Especially,five of them were also detected by the BLUP value of IFD.In addition,12 additive QTLs and 35 pairs of epistatic QTLs(62 loci involved)were identifed by the joint analysis of IFD across eight environments.Three QTLs(qIFDB04.1,qIFDB07.1 and qIFDB08.1)located on chromosome B04,B07 and B08 were identified as main-effect QTL for IFD,which had the most potential to be used in peanut breeding.This study would be helpful for the early-maturity and adaptability breeding in cultivated peanut.
基金ICAR-National Rice Research Institute for financial support
文摘Grain size plays a significant role in rice,starting from affecting yield to consumer preference,which is the driving force for deep investigation and improvement of grain size characters.Quantitative inheritance makes these traits complex to breed on account of several alleles contributing to the complete trait expression.We employed genome-wide association study in an association panel of 88 rice genotypes using 142 new candidate gene based SSR(cgSSR)markers,derived from yield-related candidate genes,with the efficient mixed-model association coupled mixed linear model for dissecting complete genetic control of grain size traits.A total of 10 significant associations were identified for four grain size-related characters(grain weight,grain length,grain width,and length-width ratio).Among the identified associations,seven marker trait associations explain more than 10%of the phenotypic variation,indicating major putative QTLs for respective traits.The allelic variations at genes OsBC1L4,SHO1 and OsD2 showed association between 1000-grain weight and grain width,1000-grain weight and grain length,and grain width and length-width ratio,respectively.The cgSSR markers,associated with corresponding traits,can be utilized for direct allelic selection,while other significantly associated cgSSRs may be utilized for allelic accumulation in the breeding programs or grain size improvement.The new cgSSR markers associated with grain size related characters have a significant impact on practical plant breeding to increase the number of causative alleles for these traits through marker aided rice breeding programs.
基金Supported by National Science Foundation of China(11901236,12261036),Scientific Research Fund of Hunan Provincial Education Department(21A0328)Provincial Natural Science Foundation of Hunan(2022JJ30469)+1 种基金Young Core Teacher Foundation of Hunan Province([2020]43)Jishou University Laboratory Program(JDDL2017001,JDLF2021024).
文摘In the current paper,we considered the Fisher information matrix from the generalized Rayleigh distribution(GR)distribution in ranked set sampling(RSS).The numerical results show that the ranked set sample carries more information about λ and α than a simple random sample of equivalent size.In order to give more insight into the performance of RSS with respect to(w.r.t.)simple random sampling(SRS),a modified unbiased estimator and a modified best linear unbiased estimator(BLUE)of scale and shape λ and α from GR distribution in SRS and RSS are studied.The numerical results show that the modified unbiased estimator and the modified BLUE of λ and α in RSS are significantly more efficient than the ones in SRS.
文摘Eldana saccharina is the most damaging stem borer of sugarcane in South Africa causing US$90 million losses of revenue annually. The breeding strategy at the South African Sugarcane Research Institute is based on evaluating parents for breeding values using progeny data derived from family plots and selecting parents with high breeding values for crossing. Family selection entails selecting whole populations of progenies based on family mean. The objective of this study was to evaluate the contribution of family selection to eldana resistance breeding. Data were collected from stage 1 (seedlings stage) trials. In each plot, stalks were examined for eldana entry and exit holes and stalks with borings were counted. The number of bored stalks was expressed as a percent of total stalks and subjected to analysis of variance. The family broad sense heritabilities ranged from 0.51 - 0.56 compared with 0.17 for Individual Genotype Selection (IGS). Predicted family selection gains ranged from 20% to 69% compared with 18% for IGS indicating the value of family selection. Female parental effects F-values (1.63 - 2.01) were significant (P = 0.0017 - 0.0041) compared with non-significant male F-values (1.33 - 1.41) and (P = 0.088 - 0.1464) suggesting maternal effects. Crossing parents with higher resistance such as 96M0058 × 94M0017, 87M0965 × 98G1166 and 97M0653 × 94M0017 produced significantly (P < 0.05) fewer bored stalks compared with those showing lower resistance (96H0590 × 95H0167, 94F2694 × 86F3326 and 76L1295 × 91L1492) suggesting additive genetic effects and that recurrent selection will be an effective breeding method.
基金supported by the National Natural Science Foundation of China under Grant Nos.71973116 and 12201018the Postdoctoral Project in China under Grant No.2022M720336+2 种基金the National Natural Science Foundation of China under Grant Nos.12071457 and 11971045the Beijing Natural Science Foundation under Grant No.1222002the NQI Project under Grant No.2022YFF0609903。
文摘In recent years,Kriging model has gained wide popularity in various fields such as space geology,econometrics,and computer experiments.As a result,research on this model has proliferated.In this paper,the authors propose a model averaging estimation based on the best linear unbiased prediction of Kriging model and the leave-one-out cross-validation method,with consideration for the model uncertainty.The authors present a weight selection criterion for the model averaging estimation and provide two theoretical justifications for the proposed method.First,the estimated weight based on the proposed criterion is asymptotically optimal in achieving the lowest possible prediction risk.Second,the proposed method asymptotically assigns all weights to the correctly specified models when the candidate model set includes these models.The effectiveness of the proposed method is verified through numerical analyses.
基金supported by the National Natural Science Foundation of ChinaTian Yuan Special Foundation (No.10226024)Postdoctoral Foundation of China and Lab.of Math.for Nonlinear Sciences at Fudan Universitysupported in part by The International Organizing Committee and The Local Organizing Committee at the University of Tampere for this Workshopsupported in part by an NSF grant of China
文摘Consider the partitioned linear regression model and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2 V, where σ2 is an unknown positive scalar, V is an n × n known symmetric nonnegative definite matrix, X = (X 1 : X 2) is an n×(p+q) known design matrix with rank(X) = r ≤ (p+q), and β = (β′ 1: β′2 )′ with β1 and β2 being p×1 and q×1 vectors of unknown parameters, respectively. In this article the formulae for the differences between the best linear unbiased estimators of M 2 X 1β1under the model and its best linear unbiased estimators under the reduced linear models of are given, where M 2 = I -X 2 X 2 + . Furthermore, the necessary and sufficient conditions for the equalities between the best linear unbiased estimators of M 2 X 1β1 under the model and those under its reduced linear models are established. Lastly, we also study the connections between the model and its linear transformation model.