A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric varia...A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.展开更多
This paper investigates a linear-quadratic mean-field stochastic optimal control problem under both positive definite case and indefinite case where the controlled systems are mean-field stochastic differential equati...This paper investigates a linear-quadratic mean-field stochastic optimal control problem under both positive definite case and indefinite case where the controlled systems are mean-field stochastic differential equations driven by a Brownian motion and Teugels mar-tingales associated with Lévy processes.In either case,we obtain the optimality system for the optimal controls in open-loop form,and by means of a decoupling technique,we obtain the optimal controls in closed-loop form which can be represented by two Riccati differen-tial equations.Moreover,the solvability of the optimality system and the Riccati equations are also obtained under both positive definite case and indefinite case.展开更多
This paper aims at solving the linear-quadratic optimal control problems(LQOCP)for time-varying descriptor systems in a real Hilbert space.By using the Moore-Penrose inverse theory and space decomposition technique,th...This paper aims at solving the linear-quadratic optimal control problems(LQOCP)for time-varying descriptor systems in a real Hilbert space.By using the Moore-Penrose inverse theory and space decomposition technique,the descriptor system can be rewritten as a new differential-algebraic equation(DAE),and then some novel sufficient conditions for the solvability of LQOCP are obtained.Especially,the methods proposed in this work are simpler and easier to verify and compute,and can solve LQOCP without the range inclusion condition.In addition,some numerical examples are shown to verify the results obtained.展开更多
In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in...In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments.展开更多
We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population...We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.展开更多
In the paper,we study an optimal control for a system representing a competitive species model with fertility and mortality depending on a weighted size in a polluted environment.A fixed point theorem is applied to ob...In the paper,we study an optimal control for a system representing a competitive species model with fertility and mortality depending on a weighted size in a polluted environment.A fixed point theorem is applied to obtain the existence and uniqueness exhibited by a non-negative solution of above mentioned model.A maximum principle helps to carefully verify the existence of the optimal control policy,and tangent-normal cone techniques help to obtain the optimal condition specific to control issue.展开更多
This paper presents a novel sequential inverse optimal control(SIOC)method for discrete-time systems,which calculates the unknown weight vectors of the cost function in real time using the input and output of an optim...This paper presents a novel sequential inverse optimal control(SIOC)method for discrete-time systems,which calculates the unknown weight vectors of the cost function in real time using the input and output of an optimally controlled discrete-time system.The proposed method overcomes the limitations of previous approaches by eliminating the need for the invertible Jacobian assumption.It calculates the possible-solution spaces and their intersections sequentially until the dimension of the intersection space decreases to one.The remaining one-dimensional vector of the possible-solution space’s intersection represents the SIOC solution.The paper presents clear conditions for convergence and addresses the issue of noisy data by clarifying the conditions for the singular values of the matrices that relate to the possible-solution space.The effectiveness of the proposed method is demonstrated through simulation results.展开更多
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we p...Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.展开更多
In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy...In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.展开更多
In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwi...In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.展开更多
In this article, the transmission dynamics of a Hand-Foot-Mouth disease model with treatment and vaccination interventions are studied. We calculated the basic reproduction number and proved the global stability of di...In this article, the transmission dynamics of a Hand-Foot-Mouth disease model with treatment and vaccination interventions are studied. We calculated the basic reproduction number and proved the global stability of disease-free equilibrium when R0 R0 > 1. Meanwhile, we obtained the optimal control strategies minimizing the cost of intervention and minimizing the infected person. We also give some numerical simulations to verify our theoretical results.展开更多
In this paper, an algorithm designed by the author is used to construct the general solution to difference equations with constant coefficients. It is worth noting that the algorithm does not require any information o...In this paper, an algorithm designed by the author is used to construct the general solution to difference equations with constant coefficients. It is worth noting that the algorithm does not require any information on the multiple roots of the characteristic equation. This means one does not need to reconfigure the algorithm when changing the multiplicity groups. It is for this reason that the algorithm is called “universal”. In the present study, we solve the task of finding a linear optimal control for linear stationary discrete one- and higher-dimensional systems with scalar control. Moreover, we give analytical expressions for the control that minimize the quadratic criterion and ensure the asymptotic stability of the closed system. The obtained optimal control depends only on the parameters of the initial system and the roots of the characteristic equation.展开更多
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ...In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.展开更多
In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation o...In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.展开更多
In this paper,a mean-variance hedging portfolio problem is considered for mean-field stochastic differential equations.The original problem can be reformulated as a nonhomogeneous linear-quadratic optimal control prob...In this paper,a mean-variance hedging portfolio problem is considered for mean-field stochastic differential equations.The original problem can be reformulated as a nonhomogeneous linear-quadratic optimal control problem with mean-field type.By virtue of the classical completion of squares,the optimal control is obtained in the form of state feedback.We use the theoretical results to the mean-variance hedging portfolio problem and get the optimal portfolio strategy.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11102031 and 11272076)the Fundamental Research Funds for Central Universities(No.DUT13LK25)+2 种基金the Key Laboratory Fund of Liaoning Province(No.L2013015)the China Postdoctoral Science Foundation(No.2014M550155)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-0114G02)
文摘A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.
基金supported by the Key Projects of Natural Science Foundation of Zhejiang Province of China(no.Z22A013952)the National Natural Science Foundation of China(no.11871121)supported by the Natural Science Foundation of Zhejiang Province of China(no.LY21A010001).
文摘This paper investigates a linear-quadratic mean-field stochastic optimal control problem under both positive definite case and indefinite case where the controlled systems are mean-field stochastic differential equations driven by a Brownian motion and Teugels mar-tingales associated with Lévy processes.In either case,we obtain the optimality system for the optimal controls in open-loop form,and by means of a decoupling technique,we obtain the optimal controls in closed-loop form which can be represented by two Riccati differen-tial equations.Moreover,the solvability of the optimality system and the Riccati equations are also obtained under both positive definite case and indefinite case.
基金supported by the National Natural Science Foundation of China(11961052,62173355)the Natural Science Foundation of Inner Mongolia(2021MS01006)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2317)。
文摘This paper aims at solving the linear-quadratic optimal control problems(LQOCP)for time-varying descriptor systems in a real Hilbert space.By using the Moore-Penrose inverse theory and space decomposition technique,the descriptor system can be rewritten as a new differential-algebraic equation(DAE),and then some novel sufficient conditions for the solvability of LQOCP are obtained.Especially,the methods proposed in this work are simpler and easier to verify and compute,and can solve LQOCP without the range inclusion condition.In addition,some numerical examples are shown to verify the results obtained.
基金supported by Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander,Colombia,project 3704.
文摘In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments.
基金This work was supported by the National Natural Science Foundations of China(Grant Nos.12275033,61973317,and 12274470)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(Grant No.2022JJ10070)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ30582)the Scientific Research Fund of Hunan Provincial Education Department(Grant No.20A025).
文摘We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.
基金Supported by the Natural Science Foundation of Ningxia(2023AAC03114)National Natural Science Foundation of China(72464026).
文摘In the paper,we study an optimal control for a system representing a competitive species model with fertility and mortality depending on a weighted size in a polluted environment.A fixed point theorem is applied to obtain the existence and uniqueness exhibited by a non-negative solution of above mentioned model.A maximum principle helps to carefully verify the existence of the optimal control policy,and tangent-normal cone techniques help to obtain the optimal condition specific to control issue.
文摘This paper presents a novel sequential inverse optimal control(SIOC)method for discrete-time systems,which calculates the unknown weight vectors of the cost function in real time using the input and output of an optimally controlled discrete-time system.The proposed method overcomes the limitations of previous approaches by eliminating the need for the invertible Jacobian assumption.It calculates the possible-solution spaces and their intersections sequentially until the dimension of the intersection space decreases to one.The remaining one-dimensional vector of the possible-solution space’s intersection represents the SIOC solution.The paper presents clear conditions for convergence and addresses the issue of noisy data by clarifying the conditions for the singular values of the matrices that relate to the possible-solution space.The effectiveness of the proposed method is demonstrated through simulation results.
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
基金supported by the DOE-MMICS SEA-CROGS DE-SC0023191 and the AFOSR MURI FA9550-20-1-0358supported by the SMART Scholarship,which is funded by the USD/R&E(The Under Secretary of Defense-Research and Engineering),National Defense Education Program(NDEP)/BA-1,Basic Research.
文摘Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.
基金supported in part by the National Key R&D Program of China under Grants 2021YFE0206100in part by the National Natural Science Foundation of China under Grant 62073321+2 种基金in part by National Defense Basic Scientific Research Program JCKY2019203C029in part by the Science and Technology Development Fund,Macao SAR under Grants FDCT-22-009-MISE,0060/2021/A2 and 0015/2020/AMJin part by the financial support from the National Defense Basic Scientific Research Project(JCKY2020130C025).
文摘In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.
文摘In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.
文摘In this article, the transmission dynamics of a Hand-Foot-Mouth disease model with treatment and vaccination interventions are studied. We calculated the basic reproduction number and proved the global stability of disease-free equilibrium when R0 R0 > 1. Meanwhile, we obtained the optimal control strategies minimizing the cost of intervention and minimizing the infected person. We also give some numerical simulations to verify our theoretical results.
文摘In this paper, an algorithm designed by the author is used to construct the general solution to difference equations with constant coefficients. It is worth noting that the algorithm does not require any information on the multiple roots of the characteristic equation. This means one does not need to reconfigure the algorithm when changing the multiplicity groups. It is for this reason that the algorithm is called “universal”. In the present study, we solve the task of finding a linear optimal control for linear stationary discrete one- and higher-dimensional systems with scalar control. Moreover, we give analytical expressions for the control that minimize the quadratic criterion and ensure the asymptotic stability of the closed system. The obtained optimal control depends only on the parameters of the initial system and the roots of the characteristic equation.
文摘In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.
文摘In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.
文摘In this paper,a mean-variance hedging portfolio problem is considered for mean-field stochastic differential equations.The original problem can be reformulated as a nonhomogeneous linear-quadratic optimal control problem with mean-field type.By virtue of the classical completion of squares,the optimal control is obtained in the form of state feedback.We use the theoretical results to the mean-variance hedging portfolio problem and get the optimal portfolio strategy.