目的研究与单纯疱疹病毒的糖蛋白D竞争结合单纯疱疹病毒进入介导物(herpes virus entry mediator,HVEM)的淋巴毒素类似物(homologous to lymphotoxins,exhibits inducible expression,and competes with HSV glycoprotein D for HVEM,a ...目的研究与单纯疱疹病毒的糖蛋白D竞争结合单纯疱疹病毒进入介导物(herpes virus entry mediator,HVEM)的淋巴毒素类似物(homologous to lymphotoxins,exhibits inducible expression,and competes with HSV glycoprotein D for HVEM,a receptor expressed by T lymphocytes,LIGHT)基因和单纯疱疹病毒胸苷激酶(herpes simplex virus thymidine kinase,HSV-TK)基因共转染的骨髓间充质干细胞(mesenchymal stem cells,MSCs)在体内的抗肿瘤免疫功能。方法将pIRES2-LIGHT基因和HSV-TK-EGFP基因共转染小鼠骨髓间充质干细胞(MSCs/LT组),以转染空载体和转染HSV-TK-EGFP基因的骨髓间充质干细胞作对照。流式细胞仪检测LIGHT分子和HSV-TK-EGFP分子在稳定转染的骨髓间充质干细胞上的表达。体内迁移实验观察MSCs/LT在小鼠体内迁移情况。观察更昔洛韦注射前后MSCs/LT对荷瘤小鼠体内肿瘤的治疗作用。ELISA法检测小鼠肿瘤组织中IFN-γ,IL-2和IL-10的水平。结果流式细胞仪检测发现,MSCs/LT能稳定高表达LIGHT分子。MSCs/LT有特异地向肿瘤组织趋化的特性。MSCs/LT和MSCs/T有较好的抑制肿瘤生长的能力,但在更昔洛韦诱导后,MSCs/LT的抗肿瘤效应下降甚至消失。同时,MSCs/LT可促使T细胞进入肿瘤组织,并促进T细胞分泌IL-2、IFN-γ,抑制IL-10分泌(P<0.05)。结论共转染人LIGHT和HSV-TK-EGFP基因的骨髓间充质干细胞能稳定高表达LIGHT分子,能特异性地向荷瘤小鼠体内肿瘤组织趋化并抑制肿瘤的生长,这种体内抗肿瘤功能可能与促进T淋巴细胞IL-2、IFN-γ等细胞因子的分泌,改善局部免疫抑制环境有关。展开更多
1.Light intensity physical activity(PA)benefits health PA guidelines worldwide recommend that adults accumulate 150 min of moderate intensity or 75 min of vigorous intensity PA(moderate-to-vigorous PA(MVPA))weekly to ...1.Light intensity physical activity(PA)benefits health PA guidelines worldwide recommend that adults accumulate 150 min of moderate intensity or 75 min of vigorous intensity PA(moderate-to-vigorous PA(MVPA))weekly to achieve health benefits.1-3 Absent from these guidelines are recommendations for light intensity PA(LPA,e.g.,walking at a leisurely pace of 3 km/h or less,equivalent to 1.5-2.9 metabolic equivalents).展开更多
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in...Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.展开更多
The aim of this study was to evaluate the factors influencing the inactivation effect of intense pulsed light(IPL)on Aeromonas salmonicida grown on chicken meat and skin,and to further develop prediction models of ina...The aim of this study was to evaluate the factors influencing the inactivation effect of intense pulsed light(IPL)on Aeromonas salmonicida grown on chicken meat and skin,and to further develop prediction models of inactivation.In this work,chicken meat and skin inoculated with meat-borne A.salmonicida isolates were subjected to IPL treatments under different conditions.The results showed that IPL had obvious bactericidal effect in the chicken skin and thickness groups when the treatment voltage and time were 7 V combined with 5 s.In addition,the lethality curves of A.salmonicida were fitted under IPL conditions of 3.5-7.5 V.The comparison of statistical parameters revealed that the Weibull model could best fit the mortality curves and could accurately predict the mortality dynamic of A.salmonicida grown on chicken skin.And further a secondary model between the scale factor b and the treatment voltage in Weibull model was established using linear equations,which determined that the secondary model could accurately predict the inactivation of A.salmonicida.This study provides a theoretical basis for future prediction models of Aeromonas,and also provides new ideas for sterilization approaches of meat-borne Aeromonas.展开更多
Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec...Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of g...Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators.展开更多
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi...The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.展开更多
Sleep quality in young adults is compromised. Instead of the recommended 7 hours, young adults’ schedule interruptions disturb sleep to a typical six and a half hours, with common disturbances in falling asleep and s...Sleep quality in young adults is compromised. Instead of the recommended 7 hours, young adults’ schedule interruptions disturb sleep to a typical six and a half hours, with common disturbances in falling asleep and staying asleep. Recent literature has identified an association between academic performance, negative mood state and low activity level in young adults with sleep disturbances. Young adulthood is a time for the installation of sleep health. Both individual and schedule impositions to the young adults’ sleep schedule are to be modified to obtain Sleep Health. Recent research has identified daytime light effects on sleep such as blue light from electronics as alerting and low level light for relaxation. The aim of this study was to identify sleep quality effects with varying light exposures. It was hypothesized that bright (>450 lux) light conditions would be considered focusing and low light (<220 lux) would be considered calming. We hypothesized that sleep quality would improve by 5% with the introduction of a calm light condition. Undergraduates from a small midwestern university were invited to participate in the study in exchange for a gift card. Six participants completed the study, two males, four females all between 21 - 24 years old. Both hypotheses were supported by qualitative analysis.展开更多
Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited s...Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited studies on the response of P.trinervis to different light qualities,so it is necessary to investigate the photosynthetic physiological changes of P.trinervis in different light environments.In our study,P.trinervis was grown for 8 months under light filtered by three different colored films.The three treatments were blue film,green film,and white plastic film.The effects of blue(B),green(G),and white(W)light on photosynthetic pigment content,absolute growth,photosynthetic parameters,soluble sugar content,and chlorophyll fluorescence parameters were studied,respectively.Compared to the Wtreatment,the chlorophyll a and b,carotenoids,total chlorophyll content(a+b),absolute growth of seedling height,net photosynthetic rate(PN),water use efficiency(WUE),total soluble sugars,sucrose,and nonphotochemical quenching(NPQ)of P.trinervis were significantly increased under B treatment.Meanwhile,chlorophyll a and b,carotenoids,total chlorophyll(a+b),transpiration rate(Tr),intercellular CO_(2) concentration(Ci),stomatal conductance(gs),absolute growth of seedling height and leaf length,reducing sugar,total soluble sugar content,and NPQ were significantly increased under G treatment.The results showed that the absolute growth and chlorophyll content of P.trinervis were increased under B light,while the sugar and photosynthetic parameters were increased under G light.Additional studies may look into how B light impacts absolute growth and promotional mechanisms,as well as how G light affects the accumulation of sugar levels.展开更多
The revolution in information sharing is fundamentally supported by the highly efficient processing,storage,and transmission of data[1].For the latter,energy consumption continuously increases with the rapid developme...The revolution in information sharing is fundamentally supported by the highly efficient processing,storage,and transmission of data[1].For the latter,energy consumption continuously increases with the rapid development of information and communication technology[2].展开更多
Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive...Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.展开更多
Highly efficient inorganic phosphors are desirable for lighting-emitting diode light sources,and increasing the doping concentration of activators is a common approach for enhancing the photoluminescence quantum yield...Highly efficient inorganic phosphors are desirable for lighting-emitting diode light sources,and increasing the doping concentration of activators is a common approach for enhancing the photoluminescence quantum yield(PLQY).However,the constraint of concentration quenching poses a great challenge for improving the PLQY.Herein,we propose a fundamental design principle by separating activators and prolonging their distance in Eu^(2+)-activated Rb_(3)Y(PO_(4))_(2)phosphors to inhibit concentration quenching,in which different quenching rates are controlled by the Eu distribution at various crystallographic sites.The blue-violet-emitting Rb_(3)Y(PO_(4))2:xEu(x=0.1%–15%)phosphors,with the occupation of Rb1,Rb2 and Y sites by Eu^(2+),exhibit rapid luminescence quenching with optimum external PLQY of 10%due to multi-channel energy migration.Interestingly,as the Eu concentration increases above 20%,Eu^(2+)prefer to occupy the Rb1 and Y sites with separated polyhedra and large interionic distances,resulting in green emission with suppressed concentration quenching,achieving an improved external PLQY of 41%.Our study provides a unique design perspective for elevating the efficiency of Eu^(2+)-activated phosphors toward high-performance inorganic luminescent materials for full-spectrum lighting.展开更多
Advanced machine vision provides a direct and fast approach to perceive the external environment,enabling the rapid development in the state-of-art automatic driving,environmental monitoring,and human-machine interact...Advanced machine vision provides a direct and fast approach to perceive the external environment,enabling the rapid development in the state-of-art automatic driving,environmental monitoring,and human-machine interaction,etc.However,detecting and recognizing objects from complex backgrounds usually requires high dynamic range imaging and complex algorithms,raising tremedous challenging in further reducing the size,weight,and power(SWaP)in sensory system.Once the target object and background are easily distinguished at the sensor hardware level,a great deal of computational resources and power consumption can be saved[1,2].展开更多
In the September 2022 issue of the Journal of Sport and Health Science,Ayala et al.1 published results from a cross-sectional study where they tested the hypothesis that light intensity physical activity(LIPA,1.6-2.9 ...In the September 2022 issue of the Journal of Sport and Health Science,Ayala et al.1 published results from a cross-sectional study where they tested the hypothesis that light intensity physical activity(LIPA,1.6-2.9 metabolic equivalents(METs))moderates the relationship between sitting time and adiposity in 219 Australian adolescents aged 14±1.6 years(mean±SD).展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
文摘目的研究与单纯疱疹病毒的糖蛋白D竞争结合单纯疱疹病毒进入介导物(herpes virus entry mediator,HVEM)的淋巴毒素类似物(homologous to lymphotoxins,exhibits inducible expression,and competes with HSV glycoprotein D for HVEM,a receptor expressed by T lymphocytes,LIGHT)基因和单纯疱疹病毒胸苷激酶(herpes simplex virus thymidine kinase,HSV-TK)基因共转染的骨髓间充质干细胞(mesenchymal stem cells,MSCs)在体内的抗肿瘤免疫功能。方法将pIRES2-LIGHT基因和HSV-TK-EGFP基因共转染小鼠骨髓间充质干细胞(MSCs/LT组),以转染空载体和转染HSV-TK-EGFP基因的骨髓间充质干细胞作对照。流式细胞仪检测LIGHT分子和HSV-TK-EGFP分子在稳定转染的骨髓间充质干细胞上的表达。体内迁移实验观察MSCs/LT在小鼠体内迁移情况。观察更昔洛韦注射前后MSCs/LT对荷瘤小鼠体内肿瘤的治疗作用。ELISA法检测小鼠肿瘤组织中IFN-γ,IL-2和IL-10的水平。结果流式细胞仪检测发现,MSCs/LT能稳定高表达LIGHT分子。MSCs/LT有特异地向肿瘤组织趋化的特性。MSCs/LT和MSCs/T有较好的抑制肿瘤生长的能力,但在更昔洛韦诱导后,MSCs/LT的抗肿瘤效应下降甚至消失。同时,MSCs/LT可促使T细胞进入肿瘤组织,并促进T细胞分泌IL-2、IFN-γ,抑制IL-10分泌(P<0.05)。结论共转染人LIGHT和HSV-TK-EGFP基因的骨髓间充质干细胞能稳定高表达LIGHT分子,能特异性地向荷瘤小鼠体内肿瘤组织趋化并抑制肿瘤的生长,这种体内抗肿瘤功能可能与促进T淋巴细胞IL-2、IFN-γ等细胞因子的分泌,改善局部免疫抑制环境有关。
文摘1.Light intensity physical activity(PA)benefits health PA guidelines worldwide recommend that adults accumulate 150 min of moderate intensity or 75 min of vigorous intensity PA(moderate-to-vigorous PA(MVPA))weekly to achieve health benefits.1-3 Absent from these guidelines are recommendations for light intensity PA(LPA,e.g.,walking at a leisurely pace of 3 km/h or less,equivalent to 1.5-2.9 metabolic equivalents).
基金This study was supported by the National Natural Science Foundation of China(Grant No.31870613)Guizhou Province High-level Innovative Talents Training Plan Project(2016)5661.
文摘Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.
基金supported by projects funded by grants from the Natural Science Foundation of Jiangsu Province in China(BK20221515)the National Natural Science Foundation of China(32172266)the Changzhou Science and Technology Support Program(CE20222002)。
文摘The aim of this study was to evaluate the factors influencing the inactivation effect of intense pulsed light(IPL)on Aeromonas salmonicida grown on chicken meat and skin,and to further develop prediction models of inactivation.In this work,chicken meat and skin inoculated with meat-borne A.salmonicida isolates were subjected to IPL treatments under different conditions.The results showed that IPL had obvious bactericidal effect in the chicken skin and thickness groups when the treatment voltage and time were 7 V combined with 5 s.In addition,the lethality curves of A.salmonicida were fitted under IPL conditions of 3.5-7.5 V.The comparison of statistical parameters revealed that the Weibull model could best fit the mortality curves and could accurately predict the mortality dynamic of A.salmonicida grown on chicken skin.And further a secondary model between the scale factor b and the treatment voltage in Weibull model was established using linear equations,which determined that the secondary model could accurately predict the inactivation of A.salmonicida.This study provides a theoretical basis for future prediction models of Aeromonas,and also provides new ideas for sterilization approaches of meat-borne Aeromonas.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074094 and 121774271)the Sino-German Mobility Program of the Sino-German Center for Science Funding(Grant No.M-0225)the Capacity Building for Science&Technology Innovation-Fundamental Scientific Research Funds(Grant No.00820531120017).
文摘Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
基金supported by the National Natural Science Foundation of China(Nos.12174444 and 52202195)the Natural Science Foundation of Hunan Province(2020RC3032)。
文摘Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators.
基金Supported by the PetroChina Science and Technology Project(2023ZG18).
文摘The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.
文摘Sleep quality in young adults is compromised. Instead of the recommended 7 hours, young adults’ schedule interruptions disturb sleep to a typical six and a half hours, with common disturbances in falling asleep and staying asleep. Recent literature has identified an association between academic performance, negative mood state and low activity level in young adults with sleep disturbances. Young adulthood is a time for the installation of sleep health. Both individual and schedule impositions to the young adults’ sleep schedule are to be modified to obtain Sleep Health. Recent research has identified daytime light effects on sleep such as blue light from electronics as alerting and low level light for relaxation. The aim of this study was to identify sleep quality effects with varying light exposures. It was hypothesized that bright (>450 lux) light conditions would be considered focusing and low light (<220 lux) would be considered calming. We hypothesized that sleep quality would improve by 5% with the introduction of a calm light condition. Undergraduates from a small midwestern university were invited to participate in the study in exchange for a gift card. Six participants completed the study, two males, four females all between 21 - 24 years old. Both hypotheses were supported by qualitative analysis.
基金Applied Basic Research Foundation of Yunnan Province(Grant No.202101AU070144)the Joint Agricultural Project of Yunnan Province(Grant No.202101BD070001-127).
文摘Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited studies on the response of P.trinervis to different light qualities,so it is necessary to investigate the photosynthetic physiological changes of P.trinervis in different light environments.In our study,P.trinervis was grown for 8 months under light filtered by three different colored films.The three treatments were blue film,green film,and white plastic film.The effects of blue(B),green(G),and white(W)light on photosynthetic pigment content,absolute growth,photosynthetic parameters,soluble sugar content,and chlorophyll fluorescence parameters were studied,respectively.Compared to the Wtreatment,the chlorophyll a and b,carotenoids,total chlorophyll content(a+b),absolute growth of seedling height,net photosynthetic rate(PN),water use efficiency(WUE),total soluble sugars,sucrose,and nonphotochemical quenching(NPQ)of P.trinervis were significantly increased under B treatment.Meanwhile,chlorophyll a and b,carotenoids,total chlorophyll(a+b),transpiration rate(Tr),intercellular CO_(2) concentration(Ci),stomatal conductance(gs),absolute growth of seedling height and leaf length,reducing sugar,total soluble sugar content,and NPQ were significantly increased under G treatment.The results showed that the absolute growth and chlorophyll content of P.trinervis were increased under B light,while the sugar and photosynthetic parameters were increased under G light.Additional studies may look into how B light impacts absolute growth and promotional mechanisms,as well as how G light affects the accumulation of sugar levels.
文摘The revolution in information sharing is fundamentally supported by the highly efficient processing,storage,and transmission of data[1].For the latter,energy consumption continuously increases with the rapid development of information and communication technology[2].
文摘Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.
基金supported by the National Natural Science Foundations of China(52202160)Beijing Municipal Natural Science Foundation(2232041)+4 种基金National Key R&D Program of China(2023YFB3507900)China Postdoctoral Science Foundation(BX20220027,2021M700298)Beijing Postdoctoral Research Foundation(2022-ZZ-065)Chaoyang District Postdoctoral Research Foundation(2022ZZ-015)Beijing University of Technology“Urban Carbon Neutral”Science and Technology Innovation Foundation。
文摘Highly efficient inorganic phosphors are desirable for lighting-emitting diode light sources,and increasing the doping concentration of activators is a common approach for enhancing the photoluminescence quantum yield(PLQY).However,the constraint of concentration quenching poses a great challenge for improving the PLQY.Herein,we propose a fundamental design principle by separating activators and prolonging their distance in Eu^(2+)-activated Rb_(3)Y(PO_(4))_(2)phosphors to inhibit concentration quenching,in which different quenching rates are controlled by the Eu distribution at various crystallographic sites.The blue-violet-emitting Rb_(3)Y(PO_(4))2:xEu(x=0.1%–15%)phosphors,with the occupation of Rb1,Rb2 and Y sites by Eu^(2+),exhibit rapid luminescence quenching with optimum external PLQY of 10%due to multi-channel energy migration.Interestingly,as the Eu concentration increases above 20%,Eu^(2+)prefer to occupy the Rb1 and Y sites with separated polyhedra and large interionic distances,resulting in green emission with suppressed concentration quenching,achieving an improved external PLQY of 41%.Our study provides a unique design perspective for elevating the efficiency of Eu^(2+)-activated phosphors toward high-performance inorganic luminescent materials for full-spectrum lighting.
文摘Advanced machine vision provides a direct and fast approach to perceive the external environment,enabling the rapid development in the state-of-art automatic driving,environmental monitoring,and human-machine interaction,etc.However,detecting and recognizing objects from complex backgrounds usually requires high dynamic range imaging and complex algorithms,raising tremedous challenging in further reducing the size,weight,and power(SWaP)in sensory system.Once the target object and background are easily distinguished at the sensor hardware level,a great deal of computational resources and power consumption can be saved[1,2].
文摘In the September 2022 issue of the Journal of Sport and Health Science,Ayala et al.1 published results from a cross-sectional study where they tested the hypothesis that light intensity physical activity(LIPA,1.6-2.9 metabolic equivalents(METs))moderates the relationship between sitting time and adiposity in 219 Australian adolescents aged 14±1.6 years(mean±SD).
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.