An ultra-wideband and high-efficiency reflective linear-to-circular polarization conversion metasurface is proposed. The proposed metasurface is composed of a square array of a corner-truncated square patch printed on...An ultra-wideband and high-efficiency reflective linear-to-circular polarization conversion metasurface is proposed. The proposed metasurface is composed of a square array of a corner-truncated square patch printed on grounded dielectric substrate and covered with a dielectric layer, which is an orthotropic anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along the directions with the tilt angles of ±45° with respect to the vertical y axis. When the u- and v-polarized waves are incident on the proposed metasurface, the phase difference between the two reflection coefficients is close to –90° in an ultra-wide frequency band, so it can realize high-efficiency and ultra-wideband LTC polarization conversion under both x- and y-polarized incidences in this band. The proposed polarization conversion metasurface is simulated and measured. Both the simulated and measured results show that the axial ratio (AR) of the reflected wave is kept below 3 dB in the ultra-wide frequency band of 5.87 GHz–21.13 GHz, which is corresponding to a relative bandwidth of 113%;moreover, the polarization conversion rate (PCR) can be kept larger than 99% in a frequency range of 8.08 GHz–20.92 GHz.展开更多
Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the m...Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields.展开更多
Compared with well-developed free space polarization converters, polarization conversion between TE and TM modes in the waveguide is generally considered to be caused by shape birefringence, like curvature, morphology...Compared with well-developed free space polarization converters, polarization conversion between TE and TM modes in the waveguide is generally considered to be caused by shape birefringence, like curvature, morphology of waveguide cross section and scattering. Here, we study the polarization conversion mechanism in 1-THz-FSR X-cut lithium niobate microrings with multiple-resonance condition, that is the conversion can be implemented by birefringence of waveguides,which will also introduce an avoided-mode crossing. In the experiment, we find that this mode crossing results in severe suppression of one sideband in local nondegenerate four-wave mixing and disrupts the cascaded four-wave mixing on this side. Simultaneously, we propose one two-dimensional method to simulate the eigenmodes(TE and TM) in X-cut microrings, and the mode crossing point. This work will provide one approach to the design of polarization converters and simulation for monolithic photonics integrated circuits, and may be helpful to the studies of missed temporal dissipative soliton formation in X-cut lithium niobate rings.展开更多
In this paper,a multifunctional chiral metasurface is presented to achieve asymmetric transmission(AT)and linear-polarization conversion(LPC).The designed metasurface consists of a cross swords-like shape and two hole...In this paper,a multifunctional chiral metasurface is presented to achieve asymmetric transmission(AT)and linear-polarization conversion(LPC).The designed metasurface consists of a cross swords-like shape and two holes in the lower side of the unit cell.In the frequency band from 8.3 GHz to 10.4 GHz,AT is realized with more than 90%efficiency and the same chiral metasurface transforms linear polarized wave into its orthogonal counterpart with high efficiency.For LPC,the polarization conversion ratio(PCR)is greater than 95%.The proposed metasurface is stable against the incident angles of striking electromagnetic(EM)waves up to 60°for both operations of AT and LPC.展开更多
Simultaneous broadband absorption and polarization conversion are crucial in many practical applications,especially in terahertz communications.Thus,actively tunable metamaterial systems can exploit the graphene-based...Simultaneous broadband absorption and polarization conversion are crucial in many practical applications,especially in terahertz communications.Thus,actively tunable metamaterial systems can exploit the graphene-based nanomaterials derived from renewable resources because of the flexible surface conductivity and selective permeability of the nanomaterials at terahertz frequencies.In this paper,we propose a graphene-based active tunable bifunctional metasurface for dynamic terahertz absorption and polarization conversion.The graphene ring presents a certain opening angle(A)along the diagonal of the xoy plane.When A=0°,the proposed metasurface behaves as a broadband absorber.Numerical results show the feasibility of achieving this polarization-insensitive absorber with nearly 100%absorptance,and the bandwidth of its 90%absorptance is 1.22 THz under normal incidence.Alternatively,when A=40°after optimization,the proposed metasurface serves as a broadband polarization convertor,resulting in robust broadband polarization conversion ratio(PCR)curves with a bandwidth surpassing 0.5 THz in the reflection spectrum.To tune the PCR response or the broad absorption spectrum of graphene,we change the Fermi energy of graphene dynamically from 0 to 0.9 eV.Furthermore,both the broadband absorption and the linear polarization conversion spectra of the proposed metasurface exhibit insensitivity to the incident angle,allowing large incident angles within 40°under high-performance operating conditions.To demonstrate the physical process,we present the impedance matching theory and measure electric field distributions.This architecture in the THz frequency range has several applications,such as in modulators,sensors,stealth,and optoelectronic switches.THz wave polarization and beam steering also have broad application prospects in the field of intelligent systems.展开更多
We present a transmission-type polarization conversion metamaterial(PCM)whose functions can be dynamically switched among the linear-to-circular(LTC)and linear-to-linear(LTL)polarization conversions.The proposed PCM c...We present a transmission-type polarization conversion metamaterial(PCM)whose functions can be dynamically switched among the linear-to-circular(LTC)and linear-to-linear(LTL)polarization conversions.The proposed PCM consists of a grating,a polarization conversion surface and a reconfigurable polarization selective surface incorporated with PIN diodes.By changing the states of diodes,the PCM can achieve the reconfigurable manipulations for incident waves.The Fabry-Pérot(F-P)resonances excited by the PCM contribute to the polarization conversions,as is illustrated.Moreover,through establishing the F-P-like cavity model and analyzing the electric field components of the transmitted waves,the conditions for realizing LTC polarization conversion are revealed,which can guide the construction of PCM.The prototype of PCM is fabricated and measured,which can achieve LTC and LTL polarization conversions within 3.31-3.56 GHz and 2.76-4.24 GHz,respectively,the polarization conversion ratios of two functions are higher than 0.95.The measurement results are in agreement with the simulation data.展开更多
Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelect...Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelectrocatalysts have been developed and optimized to achieve efficient solar hydrogen production.Among various optimization strategies,the regulation of spin polarization can tailor the intrinsic optoelectronic properties for retarding charge recombination and enhancing surface reactions,thus improving the solar-to-hydrogen(STH)efficiency.This review presents recent advances in the regulation of spin polarization to enhance spin polarized-dependent solar hydrogen evolution activity.Specifically,spin polarization manipulation strategies of several typical photocatalysts/photoelectrocatalysts(e.g.,metallic oxides,metallic sulfides,non-metallic semiconductors,ferroelectric materials,and chiral molecules)are described.In the end,the critical challenges and perspectives of spin polarization regulation towards future solar energy conversion are briefly provided.展开更多
The asymmetric transmission(AT) and polarization conversion of terahertz(THz) wave play a vital role in future THz communication,spectrum,and information processing.Generally,it is very difficult and complicated to ac...The asymmetric transmission(AT) and polarization conversion of terahertz(THz) wave play a vital role in future THz communication,spectrum,and information processing.Generally,it is very difficult and complicated to actively control the AT of electromagnetic(EM) wave by using traditional devices.Here,we theoretically demonstrate a stereo-metamaterial(stereo-MM) consisting of a layer of metal structure and a layer of phase transition structure with a polyimide spacer in between.The performance of the device is simulated by using the finite-integration-technology(FIT).The results show that the AT and polarization conversion of linearly polarized wave can be dynamically controlled in a range of 1.0 THz-1.6 THz when the conductivity c,F of vanadium dioxide(VO2) is changed under the external stimulation.This study provides an example of actively controlling of the AT and polarization conversion of the EM wave.展开更多
If a metalens integrates the circular polarization(CP)conversion function,the focusing lens together with circular-polariz-ing lens(CPL)in traditional cameras may be replaced by a metalens.However,in terahertz(THz)ban...If a metalens integrates the circular polarization(CP)conversion function,the focusing lens together with circular-polariz-ing lens(CPL)in traditional cameras may be replaced by a metalens.However,in terahertz(THz)band,the reported metalenses still do not obtain the perfect and strict single-handed CP,because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP(LCP)and right-handed CP(RCP)components.In this paper,a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion.Also,we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states,which can simply manipulate the focusing for incident linear polarization(LP)THz wave in three polarization conversion states,in-cluding LP without conversion,LCP and RCP.Moreover,the polarization conversion behavior is reversible,that is,the THz metalens can convert not only the LP into arbitrary single-handed CP,but also the LCP and RCP into two perpen-dicular LP,respectively.The metalens is expected to be used in advanced THz camera,as a great candidate for tradi-tional CPL and focusing lens group,and also shows potential application in polarization imaging with discriminating LCP and RCP.展开更多
The terahertz(THz)resonance,chirality,and polarization conversion properties of a double-layer chiral metasurface have been experimentally investigated by THz time domain spectroscopy system and polarization detection...The terahertz(THz)resonance,chirality,and polarization conversion properties of a double-layer chiral metasurface have been experimentally investigated by THz time domain spectroscopy system and polarization detection method.The special symmetric geometry of each unit cell with its adjacent cells makes a strong chiral electromagnetic response in this metasurface,which leads to a strong polarization conversion effect.Moreover,compared with the traditional THz transmission resonance sensing for film thickness,the polarization sensing characterized by polarization elliptical angle(PEA)and polarization rotation angle(PRA)shows a better Q factor and figure of merit(FoM).The results show that the Q factors of the PEA and PRA reach 43.8 and 49.1 when the interval film is 20µm,while the Q factor of THz resonance sensing is only 10.6.And these PEA and PRA can play a complementary role to obtain a double-parameter sensing method with a higher FoM,over 4 times than that of resonance sensing.This chiral metasurface and its polarization sensing method provide new ideas for the development of high-efficiency THz polarization manipulation,and open a window to the high sensitive sensing by using THz polarization spectroscopy.展开更多
Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zo...Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization.Specifically,when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms,the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave.As function demonstrations,we have designed two types of metasurface zone plates:one is a focused linear polarizer,and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves.The simulated and measured results are consistent with theoretical expectations,suggesting that the proposed concept is flexible and feasible.Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.展开更多
We propose a broadband perfect polarization conversion metasurface composed of copper sheet-backed asymmetric double spilt ring resonator(DSRR). The broadband perfect polarization convertibility results from metalli...We propose a broadband perfect polarization conversion metasurface composed of copper sheet-backed asymmetric double spilt ring resonator(DSRR). The broadband perfect polarization convertibility results from metallic ground and multiple plasmon resonances of the DSRR. Physics of plasmon resonances are governed by the electric and magnetic resonances. Both the simulation and measured results show that the polarization conversion ratio(PCR) is higher than 99%for both x- and y-polarized normally incident EM waves and the fractional bandwidth is about 34.5%. The metasurface possesses the merits of high PCR and broad bandwidth, and thus has great application values in novel polarization-control devices.展开更多
Taking into account ultra-fast carrier dynamics, this paper models 640 Gbit/s wavelength conversion scheme based on nonlinear polarization rotation (NPR) in a single semiconductor optical amplifier (SOA) and inves...Taking into account ultra-fast carrier dynamics, this paper models 640 Gbit/s wavelength conversion scheme based on nonlinear polarization rotation (NPR) in a single semiconductor optical amplifier (SOA) and investigates the performance of this kind of wavelength conversion scheme in detail. In this model, two carrier temperature equations are introduced to substitute two energy density equations, which reduce the complexity of calculation in comparison with the previous model. The temporary gain and phase shift dynamics induced by ultra-short optical pulses are numerically simulated and the simulated results are qualitatively in good agreement with reported experimental results. Simulated results show that non-inverted and inverted 640 Gbit/s wavelength conversions based on NPR are achieved with clear open eye diagrams. To further investigate the performance of the non-inverted wavelength conversion scheme, the dependence of output extinction ratio (ER) on some key parameters used in simulation is illustrated. Furthermore, simulated analyses show that high performance non-inverted wavelength conversion based on NPR can be achieved by using a red-shifted filtering scheme.展开更多
A compact broadband cross-polarization conversion metasurface functioning in the microwave regime is realized and experimentally demonstrated. The metasurface consists of a two-dimensional periodic arrangement of anis...A compact broadband cross-polarization conversion metasurface functioning in the microwave regime is realized and experimentally demonstrated. The metasurface consists of a two-dimensional periodic arrangement of anisotropic double- slit split-ring-resonator-based unit cells printed on top of a dielectric substrate, backed by metallic cladding. The proposed metasurface converts an x- or y-polarized wave into its orthogonal polarization over a fractional bandwidth of 100% from 5- 15 GHz, both for normal as well as oblique incidence. Moreover, the sub-wavelength unit-cell size, thin dielectric substrate, and unique unit-cell design collectively make the response of the metasurface same for both polarizations and insensitive to the incidence angle. The designed structure is fabricated and tested. The measurement and simulation results are found to be consistent with each other.展开更多
We theoretically investigate single-photon polarization conversion via scattering by an atom with Λ configuration coupled to a semi-infinite waveguide and discuss the two cases in which the Λ system is non-degenerat...We theoretically investigate single-photon polarization conversion via scattering by an atom with Λ configuration coupled to a semi-infinite waveguide and discuss the two cases in which the Λ system is non-degenerated and degenerated. By applying the hard-wall boundary condition of the semi-infinite waveguide, it is found that singlephoton polarization conversion can be realized with unit probability for both cases under the ideal condition.Together with the polarization conversion, the frequency conversion of a single photon can also be realized with unit probability in the ideal case if the Λ system is not degenerated.展开更多
Polarization conversion is a very important electromagnetic wave manipulation method.In this paper,we investigate a high-efficiency linear-to-circular polarization and cross-polarization converter by utilizing coding ...Polarization conversion is a very important electromagnetic wave manipulation method.In this paper,we investigate a high-efficiency linear-to-circular polarization and cross-polarization converter by utilizing coding metasurface.The coding particle consists of top layer metal pattern and bottom metal plate sandwiched with square F4B dielectric,which can manipulate the linear-to-circular polarization and cross-polarization converter of the reflected wave simultaneously.In the terahertz frequency range of 1.0 THz-2.0 THz,the reflection magnitudes reach approximately 90%and the axial ratio is less than 3 dB.The proposed polarization converter may lead to advances in a variety of applications such as security,microscopy,information processing,stealth technology,and data storage.展开更多
Broad-band all-optical wavelength conversion of differential phase-shift keyed (DPSK) signal is experimentally demonstrated. This scheme is composed of a one-bit delay interferometer demodulation stage followed by a...Broad-band all-optical wavelength conversion of differential phase-shift keyed (DPSK) signal is experimentally demonstrated. This scheme is composed of a one-bit delay interferometer demodulation stage followed by a semiconductor optical amplifier (SOA) based nonlinear polarization switch. A wavelength converter for the 10 G b/s DPSK signal is presented, which has a wide wavelength range of more than 30 nm. The converted signals experience small power penalties less than 1.4 dB compared with the original signal, at a bit error rate of 10-9. Additionally, the optical spectra, the measured waveforms and the open eye diagrams of the converted signals show a high quality wavelength conversion performance.展开更多
Resonant responses of metasurface enable effective control over the polarization properties of lights. In this paper,we demonstrate a double-rod metasurface for broadband polarization conversion in the mid-infrared re...Resonant responses of metasurface enable effective control over the polarization properties of lights. In this paper,we demonstrate a double-rod metasurface for broadband polarization conversion in the mid-infrared region. The metasurface consists of a metallic double-rod array separated from a reflecting ground plane by a film of zinc selenide. By superimposing three localized resonances, cross polarization conversion is achieved over a bandwidth of 16.9 THz around the central frequency at 34.6 THz with conversion efficiency exceeding 70%. The polarization conversion performance is in qualitative agreement with simulation. The surface current distributions and electric field profiles of the resonant modes are discussed to analyze the underlying physical mechanism. Our demonstrated broadband polarization conversion has potential applications in the area of mid-infrared spectroscopy, communication, and sensing.展开更多
We propose a femtosecond laser polarization modulation scheme to control the up-conversion(UC) luminescence in Er^(3+)-doped NaYF_4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence c...We propose a femtosecond laser polarization modulation scheme to control the up-conversion(UC) luminescence in Er^(3+)-doped NaYF_4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field.展开更多
For an n-variable logic function,the power dissipation and area of the REED-MULLER (RM) circuit corresponding to each polarity are different. Based on the propagation algorithm of signal probability,the decompositio...For an n-variable logic function,the power dissipation and area of the REED-MULLER (RM) circuit corresponding to each polarity are different. Based on the propagation algorithm of signal probability,the decomposition algorithm of a multi-input XOR/AND gate,and the multiple segment algorithm of polarity conversion,this paper successfully applies the whole annealing genetic algorithm (WAGA) to find the best polarity of an RM circuit. Through testing eight large-scale circuits from the Microelectronics Center North Carolina (MCNC) Benchmark, the SYNOPSYS synthesis results show that the RM circuits corresponding to the best polarity found using the proposed algorithm attain average power,area,and max delay savings of 77.2% ,62.4% ,and 9.2% respectively,compared with those under polarity 0.展开更多
基金Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2019JM-077 and 2018JM-6098)the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 18JK1195)the Shaanxi Key Research and Development Project, China (Grant No. 2019GY-055).
文摘An ultra-wideband and high-efficiency reflective linear-to-circular polarization conversion metasurface is proposed. The proposed metasurface is composed of a square array of a corner-truncated square patch printed on grounded dielectric substrate and covered with a dielectric layer, which is an orthotropic anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along the directions with the tilt angles of ±45° with respect to the vertical y axis. When the u- and v-polarized waves are incident on the proposed metasurface, the phase difference between the two reflection coefficients is close to –90° in an ultra-wide frequency band, so it can realize high-efficiency and ultra-wideband LTC polarization conversion under both x- and y-polarized incidences in this band. The proposed polarization conversion metasurface is simulated and measured. Both the simulated and measured results show that the axial ratio (AR) of the reflected wave is kept below 3 dB in the ultra-wide frequency band of 5.87 GHz–21.13 GHz, which is corresponding to a relative bandwidth of 113%;moreover, the polarization conversion rate (PCR) can be kept larger than 99% in a frequency range of 8.08 GHz–20.92 GHz.
基金supported by the National Natural Science Foundation of China and the Open Project Program of Wuhan National Laboratory for Optoelectronics(Grant No.2022WNLOKF012).
文摘Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12274462 and 11674396)the Department of Science and Technology of Hunan Province of China (Grant Nos. 2017RS3039 and 2018JJ1033)the Hunan Provincial Innovation Foundation for Postgraduate of China (Grant No. QL20210006)。
文摘Compared with well-developed free space polarization converters, polarization conversion between TE and TM modes in the waveguide is generally considered to be caused by shape birefringence, like curvature, morphology of waveguide cross section and scattering. Here, we study the polarization conversion mechanism in 1-THz-FSR X-cut lithium niobate microrings with multiple-resonance condition, that is the conversion can be implemented by birefringence of waveguides,which will also introduce an avoided-mode crossing. In the experiment, we find that this mode crossing results in severe suppression of one sideband in local nondegenerate four-wave mixing and disrupts the cascaded four-wave mixing on this side. Simultaneously, we propose one two-dimensional method to simulate the eigenmodes(TE and TM) in X-cut microrings, and the mode crossing point. This work will provide one approach to the design of polarization converters and simulation for monolithic photonics integrated circuits, and may be helpful to the studies of missed temporal dissipative soliton formation in X-cut lithium niobate rings.
文摘In this paper,a multifunctional chiral metasurface is presented to achieve asymmetric transmission(AT)and linear-polarization conversion(LPC).The designed metasurface consists of a cross swords-like shape and two holes in the lower side of the unit cell.In the frequency band from 8.3 GHz to 10.4 GHz,AT is realized with more than 90%efficiency and the same chiral metasurface transforms linear polarized wave into its orthogonal counterpart with high efficiency.For LPC,the polarization conversion ratio(PCR)is greater than 95%.The proposed metasurface is stable against the incident angles of striking electromagnetic(EM)waves up to 60°for both operations of AT and LPC.
基金supported by the High Level Talent Project of Basic and Applied Basic Research(Natural Science)of Hainan Province in 2019(No.2019RC158)by the Project of the Education Department of Hainan Province(No.Hnky2020ZD-2),all support is gratefully acknowledged.
文摘Simultaneous broadband absorption and polarization conversion are crucial in many practical applications,especially in terahertz communications.Thus,actively tunable metamaterial systems can exploit the graphene-based nanomaterials derived from renewable resources because of the flexible surface conductivity and selective permeability of the nanomaterials at terahertz frequencies.In this paper,we propose a graphene-based active tunable bifunctional metasurface for dynamic terahertz absorption and polarization conversion.The graphene ring presents a certain opening angle(A)along the diagonal of the xoy plane.When A=0°,the proposed metasurface behaves as a broadband absorber.Numerical results show the feasibility of achieving this polarization-insensitive absorber with nearly 100%absorptance,and the bandwidth of its 90%absorptance is 1.22 THz under normal incidence.Alternatively,when A=40°after optimization,the proposed metasurface serves as a broadband polarization convertor,resulting in robust broadband polarization conversion ratio(PCR)curves with a bandwidth surpassing 0.5 THz in the reflection spectrum.To tune the PCR response or the broad absorption spectrum of graphene,we change the Fermi energy of graphene dynamically from 0 to 0.9 eV.Furthermore,both the broadband absorption and the linear polarization conversion spectra of the proposed metasurface exhibit insensitivity to the incident angle,allowing large incident angles within 40°under high-performance operating conditions.To demonstrate the physical process,we present the impedance matching theory and measure electric field distributions.This architecture in the THz frequency range has several applications,such as in modulators,sensors,stealth,and optoelectronic switches.THz wave polarization and beam steering also have broad application prospects in the field of intelligent systems.
基金Project supported by the Fundamental Research Funds for Central Universities(Grant No.2682020GF03)
文摘We present a transmission-type polarization conversion metamaterial(PCM)whose functions can be dynamically switched among the linear-to-circular(LTC)and linear-to-linear(LTL)polarization conversions.The proposed PCM consists of a grating,a polarization conversion surface and a reconfigurable polarization selective surface incorporated with PIN diodes.By changing the states of diodes,the PCM can achieve the reconfigurable manipulations for incident waves.The Fabry-Pérot(F-P)resonances excited by the PCM contribute to the polarization conversions,as is illustrated.Moreover,through establishing the F-P-like cavity model and analyzing the electric field components of the transmitted waves,the conditions for realizing LTC polarization conversion are revealed,which can guide the construction of PCM.The prototype of PCM is fabricated and measured,which can achieve LTC and LTL polarization conversions within 3.31-3.56 GHz and 2.76-4.24 GHz,respectively,the polarization conversion ratios of two functions are higher than 0.95.The measurement results are in agreement with the simulation data.
基金support from the National Natural Science Foundation of China(No.22105031)National Key Research and Development Program of China(No.2019YFE0121600)+2 种基金Sichuan Science and Technology Program(No.2021YFH0054,2023JDGD0011)Fundamental Research Funds for the Central Universities(ZYGX2020J028)Z.M.W.acknowledges the National Key Research and Development Program of China(No.2019YFB2203400)and the“111 Project”(No.B20030).
文摘Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelectrocatalysts have been developed and optimized to achieve efficient solar hydrogen production.Among various optimization strategies,the regulation of spin polarization can tailor the intrinsic optoelectronic properties for retarding charge recombination and enhancing surface reactions,thus improving the solar-to-hydrogen(STH)efficiency.This review presents recent advances in the regulation of spin polarization to enhance spin polarized-dependent solar hydrogen evolution activity.Specifically,spin polarization manipulation strategies of several typical photocatalysts/photoelectrocatalysts(e.g.,metallic oxides,metallic sulfides,non-metallic semiconductors,ferroelectric materials,and chiral molecules)are described.In the end,the critical challenges and perspectives of spin polarization regulation towards future solar energy conversion are briefly provided.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574059 and 61965005)the National Technology Major Special Project,China(Grant No.2017ZX02101007-003)+2 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2018GXNSFAA050043)the Guangxi Special Expert Program and Innovation Project of Guangxi Graduate Education,China(Grant Nos.2019YCXS088 and 2019YCXS094)the Foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument,China(Grant No.YQ16101).
文摘The asymmetric transmission(AT) and polarization conversion of terahertz(THz) wave play a vital role in future THz communication,spectrum,and information processing.Generally,it is very difficult and complicated to actively control the AT of electromagnetic(EM) wave by using traditional devices.Here,we theoretically demonstrate a stereo-metamaterial(stereo-MM) consisting of a layer of metal structure and a layer of phase transition structure with a polyimide spacer in between.The performance of the device is simulated by using the finite-integration-technology(FIT).The results show that the AT and polarization conversion of linearly polarized wave can be dynamically controlled in a range of 1.0 THz-1.6 THz when the conductivity c,F of vanadium dioxide(VO2) is changed under the external stimulation.This study provides an example of actively controlling of the AT and polarization conversion of the EM wave.
基金supported by the National Natural Science Foundation of China(Nos.61675147,61735010 and 91838301)National Key Research and Development Program of China(No.2017YFA0700202)Basic Re-search Program of Shenzhen(JCYJ20170412154447469).
文摘If a metalens integrates the circular polarization(CP)conversion function,the focusing lens together with circular-polariz-ing lens(CPL)in traditional cameras may be replaced by a metalens.However,in terahertz(THz)band,the reported metalenses still do not obtain the perfect and strict single-handed CP,because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP(LCP)and right-handed CP(RCP)components.In this paper,a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion.Also,we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states,which can simply manipulate the focusing for incident linear polarization(LP)THz wave in three polarization conversion states,in-cluding LP without conversion,LCP and RCP.Moreover,the polarization conversion behavior is reversible,that is,the THz metalens can convert not only the LP into arbitrary single-handed CP,but also the LCP and RCP into two perpen-dicular LP,respectively.The metalens is expected to be used in advanced THz camera,as a great candidate for tradi-tional CPL and focusing lens group,and also shows potential application in polarization imaging with discriminating LCP and RCP.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0701000)the National Natural Science Foundation of China(Grant Nos.61971242,61831012,and 61671491)+1 种基金the Natural Science Foundation of Tianjin City,China(Grant No.19JCYBJC16600)the Young Elite Scientists Sponsorship Program by Tianjin,China(Grant No.TJSQNTJ-2017-12).
文摘The terahertz(THz)resonance,chirality,and polarization conversion properties of a double-layer chiral metasurface have been experimentally investigated by THz time domain spectroscopy system and polarization detection method.The special symmetric geometry of each unit cell with its adjacent cells makes a strong chiral electromagnetic response in this metasurface,which leads to a strong polarization conversion effect.Moreover,compared with the traditional THz transmission resonance sensing for film thickness,the polarization sensing characterized by polarization elliptical angle(PEA)and polarization rotation angle(PRA)shows a better Q factor and figure of merit(FoM).The results show that the Q factors of the PEA and PRA reach 43.8 and 49.1 when the interval film is 20µm,while the Q factor of THz resonance sensing is only 10.6.And these PEA and PRA can play a complementary role to obtain a double-parameter sensing method with a higher FoM,over 4 times than that of resonance sensing.This chiral metasurface and its polarization sensing method provide new ideas for the development of high-efficiency THz polarization manipulation,and open a window to the high sensitive sensing by using THz polarization spectroscopy.
文摘Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization.Specifically,when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms,the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave.As function demonstrations,we have designed two types of metasurface zone plates:one is a focused linear polarizer,and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves.The simulated and measured results are consistent with theoretical expectations,suggesting that the proposed concept is flexible and feasible.Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331005,11204378,11274389,11304393,and 61302023)the National Science Foundation for Post-doctoral Scientists of China(Grant Nos.2013M532131 and 2013M532221)+1 种基金the Natural Science Foundation of Shaanxi Province,China(Grant No.2013JM6005)the Aviation Science Foundation of China(Grant Nos.20132796018 and 20123196015)
文摘We propose a broadband perfect polarization conversion metasurface composed of copper sheet-backed asymmetric double spilt ring resonator(DSRR). The broadband perfect polarization convertibility results from metallic ground and multiple plasmon resonances of the DSRR. Physics of plasmon resonances are governed by the electric and magnetic resonances. Both the simulation and measured results show that the polarization conversion ratio(PCR) is higher than 99%for both x- and y-polarized normally incident EM waves and the fractional bandwidth is about 34.5%. The metasurface possesses the merits of high PCR and broad bandwidth, and thus has great application values in novel polarization-control devices.
基金Project supported by the Ministry of Education of China(Grant Nos105036 and NCET-04-0116)
文摘Taking into account ultra-fast carrier dynamics, this paper models 640 Gbit/s wavelength conversion scheme based on nonlinear polarization rotation (NPR) in a single semiconductor optical amplifier (SOA) and investigates the performance of this kind of wavelength conversion scheme in detail. In this model, two carrier temperature equations are introduced to substitute two energy density equations, which reduce the complexity of calculation in comparison with the previous model. The temporary gain and phase shift dynamics induced by ultra-short optical pulses are numerically simulated and the simulated results are qualitatively in good agreement with reported experimental results. Simulated results show that non-inverted and inverted 640 Gbit/s wavelength conversions based on NPR are achieved with clear open eye diagrams. To further investigate the performance of the non-inverted wavelength conversion scheme, the dependence of output extinction ratio (ER) on some key parameters used in simulation is illustrated. Furthermore, simulated analyses show that high performance non-inverted wavelength conversion based on NPR can be achieved by using a red-shifted filtering scheme.
文摘A compact broadband cross-polarization conversion metasurface functioning in the microwave regime is realized and experimentally demonstrated. The metasurface consists of a two-dimensional periodic arrangement of anisotropic double- slit split-ring-resonator-based unit cells printed on top of a dielectric substrate, backed by metallic cladding. The proposed metasurface converts an x- or y-polarized wave into its orthogonal polarization over a fractional bandwidth of 100% from 5- 15 GHz, both for normal as well as oblique incidence. Moreover, the sub-wavelength unit-cell size, thin dielectric substrate, and unique unit-cell design collectively make the response of the metasurface same for both polarizations and insensitive to the incidence angle. The designed structure is fabricated and tested. The measurement and simulation results are found to be consistent with each other.
基金Supported by the Anhui Provincial Natural Science Foundation under Grant Nos 1608085MA05 and 1608085MA09the National Natural Science Foundation of China under Grant Nos 11774262 and 11474003
文摘We theoretically investigate single-photon polarization conversion via scattering by an atom with Λ configuration coupled to a semi-infinite waveguide and discuss the two cases in which the Λ system is non-degenerated and degenerated. By applying the hard-wall boundary condition of the semi-infinite waveguide, it is found that singlephoton polarization conversion can be realized with unit probability for both cases under the ideal condition.Together with the polarization conversion, the frequency conversion of a single photon can also be realized with unit probability in the ideal case if the Λ system is not degenerated.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFF0200306)the National Natural Science Foundation of China(Grant Nos.61871355 and 61831012).
文摘Polarization conversion is a very important electromagnetic wave manipulation method.In this paper,we investigate a high-efficiency linear-to-circular polarization and cross-polarization converter by utilizing coding metasurface.The coding particle consists of top layer metal pattern and bottom metal plate sandwiched with square F4B dielectric,which can manipulate the linear-to-circular polarization and cross-polarization converter of the reflected wave simultaneously.In the terahertz frequency range of 1.0 THz-2.0 THz,the reflection magnitudes reach approximately 90%and the axial ratio is less than 3 dB.The proposed polarization converter may lead to advances in a variety of applications such as security,microscopy,information processing,stealth technology,and data storage.
文摘Broad-band all-optical wavelength conversion of differential phase-shift keyed (DPSK) signal is experimentally demonstrated. This scheme is composed of a one-bit delay interferometer demodulation stage followed by a semiconductor optical amplifier (SOA) based nonlinear polarization switch. A wavelength converter for the 10 G b/s DPSK signal is presented, which has a wide wavelength range of more than 30 nm. The converted signals experience small power penalties less than 1.4 dB compared with the original signal, at a bit error rate of 10-9. Additionally, the optical spectra, the measured waveforms and the open eye diagrams of the converted signals show a high quality wavelength conversion performance.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.61421002 and 61575036)the Chinese National 1000 Plan for Young Talentsthe Startup Funding from University of Electronic Science and Technology of China
文摘Resonant responses of metasurface enable effective control over the polarization properties of lights. In this paper,we demonstrate a double-rod metasurface for broadband polarization conversion in the mid-infrared region. The metasurface consists of a metallic double-rod array separated from a reflecting ground plane by a film of zinc selenide. By superimposing three localized resonances, cross polarization conversion is achieved over a bandwidth of 16.9 THz around the central frequency at 34.6 THz with conversion efficiency exceeding 70%. The polarization conversion performance is in qualitative agreement with simulation. The surface current distributions and electric field profiles of the resonant modes are discussed to analyze the underlying physical mechanism. Our demonstrated broadband polarization conversion has potential applications in the area of mid-infrared spectroscopy, communication, and sensing.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11304396)the National Natural Science Foundation of China(Grant Nos.11474096 and 51132004)the Shanghai Municipal Science and Technology Commission,China(Grant No.14JC1401500)
文摘We propose a femtosecond laser polarization modulation scheme to control the up-conversion(UC) luminescence in Er^(3+)-doped NaYF_4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field.
文摘For an n-variable logic function,the power dissipation and area of the REED-MULLER (RM) circuit corresponding to each polarity are different. Based on the propagation algorithm of signal probability,the decomposition algorithm of a multi-input XOR/AND gate,and the multiple segment algorithm of polarity conversion,this paper successfully applies the whole annealing genetic algorithm (WAGA) to find the best polarity of an RM circuit. Through testing eight large-scale circuits from the Microelectronics Center North Carolina (MCNC) Benchmark, the SYNOPSYS synthesis results show that the RM circuits corresponding to the best polarity found using the proposed algorithm attain average power,area,and max delay savings of 77.2% ,62.4% ,and 9.2% respectively,compared with those under polarity 0.