This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Trans...In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.展开更多
The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanic...The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.展开更多
In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 tha...In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D G...Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.展开更多
In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential d...In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.展开更多
Because of the extensive applications of nonlinear ordinary differential equation in physics,mechanics and cybernetics,there have been many papers on the exact solution to differential equation in some major publicati...Because of the extensive applications of nonlinear ordinary differential equation in physics,mechanics and cybernetics,there have been many papers on the exact solution to differential equation in some major publications both at home and abroad in recent years Based on these papers and in virtue of Leibniz formula,and transformation set technique,this paper puts forth the solution to nonlinear ordinary differential equation set of higher-orders, moveover,its integrability is proven.The results obtained are the generalization of those in the references.展开更多
In this paper, the Laplace Transform is used to find explicit solutions of a fam-ily of second order Differential Equations with non-constant coefficients. For some of these equations, it is possible to find the solut...In this paper, the Laplace Transform is used to find explicit solutions of a fam-ily of second order Differential Equations with non-constant coefficients. For some of these equations, it is possible to find the solutions using standard tech-niques of solving Ordinary Differential Equations. For others, it seems to be very difficult indeed impossible to find explicit solutions using traditional methods. The Laplace transform could be an alternative way. An application on solving a Riccati Equation is given. Recall that the Riccati Equation is a non-linear differential equation that arises in many topics of Quantum Me-chanics and Physics.展开更多
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part,...In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.展开更多
This paper studies the well-posedness of fully coupled linear forward-backward stochastic differential equations (FBSDEs). The authors introduce two main methods-the method of continuation under monotonicity condition...This paper studies the well-posedness of fully coupled linear forward-backward stochastic differential equations (FBSDEs). The authors introduce two main methods-the method of continuation under monotonicity conditions and the unified approach-to ensure the existence and uniqueness of solutions of fully coupled linear FBSDEs. The authors show that the first method (the method of continuation under monotonicity conditions) can be deduced as a special case of the second method (the unified approach). An example is given to illustrate it in linear FBSDEs case. And then, a linear transformation method in virtue of the non-degeneracy of transformation matrix is introduced for cases that the linear FBSDEs can not be dealt with by the the method of continuation under monotonicity conditions and the unified approach directly. As a powerful supplement to the the method of continuation under monotonicity conditions and the unified approach, linear transformation method overall develops the well-posedness theory of fully coupled linear forward-backward stochastic differential equations which have potential applications in optimal control and partial differential equation theory.展开更多
The unicity of the solution, if any, of a class of nonlinear functional differential equations (fde) is established with the help of a transformation. The transformation reduces the fde to an ordinary differential eq...The unicity of the solution, if any, of a class of nonlinear functional differential equations (fde) is established with the help of a transformation. The transformation reduces the fde to an ordinary differential equation. Existence of the solution is established by means of a fixed point theorem.展开更多
In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform i...In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform into original given problem and finds the numerical solution. Then they implemented this method on two linear examples with right end boundary layer which nicely approximate the exact solution.展开更多
A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of ...A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.展开更多
The paper is devoted to non-homogeneous second-order differential equations with polynomial right parts and polynomial coefficients.We derive estimates for the partial sums and products of the zeros of solutions to th...The paper is devoted to non-homogeneous second-order differential equations with polynomial right parts and polynomial coefficients.We derive estimates for the partial sums and products of the zeros of solutions to the considered equations.These estimates give us bounds for the function counting the zeros of solutions and information about the zero-free domains.展开更多
Based on a recent result on linking stochastic differential equations on R^d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional ap...Based on a recent result on linking stochastic differential equations on R^d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensionl stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval.展开更多
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
文摘In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.
文摘The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.
文摘In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
基金The paper was financially supported by the National Natural Science Foundation of China (No. 19802008)Excellent Doctoral Dissertation Grant of the Ministry of Education of China (No. 199927)
文摘Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.
文摘In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.
文摘Because of the extensive applications of nonlinear ordinary differential equation in physics,mechanics and cybernetics,there have been many papers on the exact solution to differential equation in some major publications both at home and abroad in recent years Based on these papers and in virtue of Leibniz formula,and transformation set technique,this paper puts forth the solution to nonlinear ordinary differential equation set of higher-orders, moveover,its integrability is proven.The results obtained are the generalization of those in the references.
文摘In this paper, the Laplace Transform is used to find explicit solutions of a fam-ily of second order Differential Equations with non-constant coefficients. For some of these equations, it is possible to find the solutions using standard tech-niques of solving Ordinary Differential Equations. For others, it seems to be very difficult indeed impossible to find explicit solutions using traditional methods. The Laplace transform could be an alternative way. An application on solving a Riccati Equation is given. Recall that the Riccati Equation is a non-linear differential equation that arises in many topics of Quantum Me-chanics and Physics.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
基金Provincial Science and Technology Foundation of Guizhou
文摘In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.
基金supported by the National Natural Science Foundation of China under Grant No.61573217the National High-Level Personnel of Special Support Programthe Chang Jiang Scholar Program of Chinese Education Ministry
文摘This paper studies the well-posedness of fully coupled linear forward-backward stochastic differential equations (FBSDEs). The authors introduce two main methods-the method of continuation under monotonicity conditions and the unified approach-to ensure the existence and uniqueness of solutions of fully coupled linear FBSDEs. The authors show that the first method (the method of continuation under monotonicity conditions) can be deduced as a special case of the second method (the unified approach). An example is given to illustrate it in linear FBSDEs case. And then, a linear transformation method in virtue of the non-degeneracy of transformation matrix is introduced for cases that the linear FBSDEs can not be dealt with by the the method of continuation under monotonicity conditions and the unified approach directly. As a powerful supplement to the the method of continuation under monotonicity conditions and the unified approach, linear transformation method overall develops the well-posedness theory of fully coupled linear forward-backward stochastic differential equations which have potential applications in optimal control and partial differential equation theory.
文摘The unicity of the solution, if any, of a class of nonlinear functional differential equations (fde) is established with the help of a transformation. The transformation reduces the fde to an ordinary differential equation. Existence of the solution is established by means of a fixed point theorem.
文摘In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform into original given problem and finds the numerical solution. Then they implemented this method on two linear examples with right end boundary layer which nicely approximate the exact solution.
基金supported by National Natural Science Foundation of China (No. 40805048,No. 11026226)Typhoon Research Foundation of Shanghai Typhoon Institute/China Meteorological Administration (No. 2008ST01)+1 种基金Research Foundation of State Key Laboratory of Remote Sensing Science,Jointly sponsored by the Instituteof Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University (No. 2009KFJJ013)Research Foundation of State Key Laboratory of Severe Weather/Chinese Academy of Meteorological Sciences (No. 2008LASW-B03)
文摘A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.
文摘The paper is devoted to non-homogeneous second-order differential equations with polynomial right parts and polynomial coefficients.We derive estimates for the partial sums and products of the zeros of solutions to the considered equations.These estimates give us bounds for the function counting the zeros of solutions and information about the zero-free domains.
文摘Based on a recent result on linking stochastic differential equations on R^d to (finite-dimensional) Burger-KPZ type nonlinear parabolic partial differential equations, we utilize Galerkin type finite-dimensional approximations to characterize the path-independence of the density process of Girsanov transformation for the infinite-dimensionl stochastic evolution equations. Our result provides a link of infinite-dimensional semi-linear stochastic differential equations to infinite-dimensional Burgers-KPZ type nonlinear parabolic partial differential equations. As an application, this characterization result is applied to stochastic heat equation in one space dimension over the unit interval.