In this paper, an efficient weight initialization method is proposed using Cauchy’s inequality based on sensitivity analy- sis to improve the convergence speed in single hidden layer feedforward neural networks. The ...In this paper, an efficient weight initialization method is proposed using Cauchy’s inequality based on sensitivity analy- sis to improve the convergence speed in single hidden layer feedforward neural networks. The proposed method ensures that the outputs of hidden neurons are in the active region which increases the rate of convergence. Also the weights are learned by minimizing the sum of squared errors and obtained by solving linear system of equations. The proposed method is simulated on various problems. In all the problems the number of epochs and time required for the proposed method is found to be minimum compared with other weight initialization methods.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduce...In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown that in this paper, the same formula can be used to estimate the solution of sets of linear equations from diverging Gauss-Seidel iterations. In both convergent and divergent iterations, the ratios of differences among the consecutive values of iteration eventually form a convergent (divergent) series with a factor equal to the largest Eigen value of the iteration matrix. Higher order Aitken extrapolation is shown to eliminate the influence of dominant Eigen values of the iteration matrix in successive order until the iteration is determined by the lowest possible Eigen values. For the convergent part of the Gauss-Seidel iteration, further acceleration is made possible by coupling of the extrapolation technique with the successive over relaxation (SOR) method. Application examples from both convergent and divergent iterations have been provided. Coupling of the extrapolation with the SOR technique is also illustrated for a steady state two dimensional heat flow problem which was solved using MATLAB programming.展开更多
For an upper bound of the spectral radius of the QHSS (quasi Hermitian and skew-Hermitian splitting) iteration matrix which can also bound the contraction factor of the QHSS iteration method,we give its minimum point ...For an upper bound of the spectral radius of the QHSS (quasi Hermitian and skew-Hermitian splitting) iteration matrix which can also bound the contraction factor of the QHSS iteration method,we give its minimum point under the conditions which guarantee that the upper bound is strictly less than one. This provides a good choice of the involved iteration parameters,so that the convergence rate of the QHSS iteration method can be significantly improved.展开更多
The purpose of initial orbit determination,especially in the case of angles-only data for observation,is to obtain an initial estimate that is close enough to the true orbit to enable subsequent precision orbit determ...The purpose of initial orbit determination,especially in the case of angles-only data for observation,is to obtain an initial estimate that is close enough to the true orbit to enable subsequent precision orbit determination processing to be successful.However,the classical angles-only initial orbit determination methods cannot deal with the observation data whose Earth-central angle is larger than 360°.In this paper,an improved double r-iteration initial orbit determination method to deal with the above case is presented to monitor geosynchronous Earth orbit objects for a spacebased surveillance system.Simulation results indicate that the improved double r-iteration method is feasible,and the accuracy of the obtained initial orbit meets the requirements of re-acquiring the object.展开更多
Iteration methods and their convergences of the maximum likelihoodestimator are discussed in this paper.We study Gauss-Newton method and give a set ofsufficient conditions for the convergence of asymptotic numerical s...Iteration methods and their convergences of the maximum likelihoodestimator are discussed in this paper.We study Gauss-Newton method and give a set ofsufficient conditions for the convergence of asymptotic numerical stability.The modifiedGauss-Newton method is also studied and the sufficient conditions of the convergence arepresented.Two numerical examples are given to illustrate our results.展开更多
In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thirteenth order differential equations in boundary value problems. The method is based on boundary val...In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thirteenth order differential equations in boundary value problems. The method is based on boundary valued problems. Two numerical examples are presented for the numerical illustration of the method and their results are compared with those considered by [1,2]. The results reveal that VIM is very effective and highly promising in comparison with other numerical methods.展开更多
In this work we will consider asynchronous iteration algorithms. As is well known in multiprocessor computers the parallel application of iterative methods often shows poor scaling and less optimal parallel efficiency...In this work we will consider asynchronous iteration algorithms. As is well known in multiprocessor computers the parallel application of iterative methods often shows poor scaling and less optimal parallel efficiency. The ordinary iterative asynchronous method often has much better parallel efficiency as they almost never need to wait to communicate between possessors. We will study probabilistic approach in asynchronous iteration algorithms and present a mathematical description of this computational process to the multiprocessor environment. The result of our simple numerical experiments shows a convergence and efficiency of asynchronous iterative processes for considered nonlinear problems.展开更多
Contrary to the opinion about approximation nature of a simple-iteration method, the exact solution of a system of linear algebraic equations (SLAE) in a finite number of iterations with a stationary matrix is demonst...Contrary to the opinion about approximation nature of a simple-iteration method, the exact solution of a system of linear algebraic equations (SLAE) in a finite number of iterations with a stationary matrix is demonstrated. We present a theorem and its proof that confirms the possibility to obtain the finite process and imposes the requirement for the matrix of SLAE. This matrix must be unipotent, i.e. all its eigenvalues to be equal to 1. An example of transformation of SLAE given analytically to the form with a unipotent matrix is presented. It is shown that splitting the unipotent matrix into identity and nilpotent ones results in Cramer’s analytical formulas in a finite number of iterations.展开更多
This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful to...This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful tool used to propagate position and velocity,the present results show that using orbital elements to propagate the state vector reduces the number of MCPI iterations and nodes required,which is especially useful for reducing the computation time when including computationally-intensive calculations such as Spherical Harmonic gravity,and it also converges for>5.5x as many revolutions using a single segment when compared with cartesian propagation.Results for the Classical Orbital Elements and the Modified Equinoctial Orbital Elements(the latter provides singularity-free solutions)show that state propagation using these variables is inherently well-suited to the propagation method chosen.Additional benefits are achieved using a segmentation scheme,while future expansion to the two-point boundary value problem is expected to increase the domain of convergence compared with the cartesian case.MCPI is an iterative numerical method used to solve linear and nonlinear,ordinary differential equations(ODEs).It is a fusion of orthogonal Chebyshev function approximation with Picard iteration that approximates a long-arc trajectory at every iteration.Previous studies have shown that it outperforms the state of the practice numerical integrators of ODEs in a serial computing environment;since MCPI is inherently massively parallelizable,this capability is expected to increase the computational efficiency of the method presented.展开更多
The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the ex...The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the existing numerical inversion methods are still challenging due to the ill-posed nature of the first kind Fredholm integral equation and the contamination of the noises.This paper proposes a novel inversion algorithmto accelerate the convergence and enhance the precision using empirical truncated singular value decompositions(TSVD)and the linearized Bregman iteration.The L1 penalty term is applied to construct the objective function,and then the linearized Bregman iteration is utilized to obtain fast convergence.To reduce the complexity of the computation,empirical TSVD is proposed to compress the kernel matrix and determine the appropriate truncated position.This novel inversion method is validated using numerical simulations.The results indicate that the proposed novel method is significantly efficient and can achieve quick and effective data solutions with low signal-to-noise ratios.展开更多
锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识...锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。展开更多
文摘In this paper, an efficient weight initialization method is proposed using Cauchy’s inequality based on sensitivity analy- sis to improve the convergence speed in single hidden layer feedforward neural networks. The proposed method ensures that the outputs of hidden neurons are in the active region which increases the rate of convergence. Also the weights are learned by minimizing the sum of squared errors and obtained by solving linear system of equations. The proposed method is simulated on various problems. In all the problems the number of epochs and time required for the proposed method is found to be minimum compared with other weight initialization methods.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
文摘In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown that in this paper, the same formula can be used to estimate the solution of sets of linear equations from diverging Gauss-Seidel iterations. In both convergent and divergent iterations, the ratios of differences among the consecutive values of iteration eventually form a convergent (divergent) series with a factor equal to the largest Eigen value of the iteration matrix. Higher order Aitken extrapolation is shown to eliminate the influence of dominant Eigen values of the iteration matrix in successive order until the iteration is determined by the lowest possible Eigen values. For the convergent part of the Gauss-Seidel iteration, further acceleration is made possible by coupling of the extrapolation technique with the successive over relaxation (SOR) method. Application examples from both convergent and divergent iterations have been provided. Coupling of the extrapolation with the SOR technique is also illustrated for a steady state two dimensional heat flow problem which was solved using MATLAB programming.
基金the National Natural Science Foundation (No.11671393),China.
文摘For an upper bound of the spectral radius of the QHSS (quasi Hermitian and skew-Hermitian splitting) iteration matrix which can also bound the contraction factor of the QHSS iteration method,we give its minimum point under the conditions which guarantee that the upper bound is strictly less than one. This provides a good choice of the involved iteration parameters,so that the convergence rate of the QHSS iteration method can be significantly improved.
文摘The purpose of initial orbit determination,especially in the case of angles-only data for observation,is to obtain an initial estimate that is close enough to the true orbit to enable subsequent precision orbit determination processing to be successful.However,the classical angles-only initial orbit determination methods cannot deal with the observation data whose Earth-central angle is larger than 360°.In this paper,an improved double r-iteration initial orbit determination method to deal with the above case is presented to monitor geosynchronous Earth orbit objects for a spacebased surveillance system.Simulation results indicate that the improved double r-iteration method is feasible,and the accuracy of the obtained initial orbit meets the requirements of re-acquiring the object.
文摘Iteration methods and their convergences of the maximum likelihoodestimator are discussed in this paper.We study Gauss-Newton method and give a set ofsufficient conditions for the convergence of asymptotic numerical stability.The modifiedGauss-Newton method is also studied and the sufficient conditions of the convergence arepresented.Two numerical examples are given to illustrate our results.
文摘In this paper, we extend variational iteration method (VIM) to find approximate solutions of linear and nonlinear thirteenth order differential equations in boundary value problems. The method is based on boundary valued problems. Two numerical examples are presented for the numerical illustration of the method and their results are compared with those considered by [1,2]. The results reveal that VIM is very effective and highly promising in comparison with other numerical methods.
文摘In this work we will consider asynchronous iteration algorithms. As is well known in multiprocessor computers the parallel application of iterative methods often shows poor scaling and less optimal parallel efficiency. The ordinary iterative asynchronous method often has much better parallel efficiency as they almost never need to wait to communicate between possessors. We will study probabilistic approach in asynchronous iteration algorithms and present a mathematical description of this computational process to the multiprocessor environment. The result of our simple numerical experiments shows a convergence and efficiency of asynchronous iterative processes for considered nonlinear problems.
文摘Contrary to the opinion about approximation nature of a simple-iteration method, the exact solution of a system of linear algebraic equations (SLAE) in a finite number of iterations with a stationary matrix is demonstrated. We present a theorem and its proof that confirms the possibility to obtain the finite process and imposes the requirement for the matrix of SLAE. This matrix must be unipotent, i.e. all its eigenvalues to be equal to 1. An example of transformation of SLAE given analytically to the form with a unipotent matrix is presented. It is shown that splitting the unipotent matrix into identity and nilpotent ones results in Cramer’s analytical formulas in a finite number of iterations.
文摘This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful tool used to propagate position and velocity,the present results show that using orbital elements to propagate the state vector reduces the number of MCPI iterations and nodes required,which is especially useful for reducing the computation time when including computationally-intensive calculations such as Spherical Harmonic gravity,and it also converges for>5.5x as many revolutions using a single segment when compared with cartesian propagation.Results for the Classical Orbital Elements and the Modified Equinoctial Orbital Elements(the latter provides singularity-free solutions)show that state propagation using these variables is inherently well-suited to the propagation method chosen.Additional benefits are achieved using a segmentation scheme,while future expansion to the two-point boundary value problem is expected to increase the domain of convergence compared with the cartesian case.MCPI is an iterative numerical method used to solve linear and nonlinear,ordinary differential equations(ODEs).It is a fusion of orthogonal Chebyshev function approximation with Picard iteration that approximates a long-arc trajectory at every iteration.Previous studies have shown that it outperforms the state of the practice numerical integrators of ODEs in a serial computing environment;since MCPI is inherently massively parallelizable,this capability is expected to increase the computational efficiency of the method presented.
基金support by the National Nature Science Foundation of China(42174142)CNPC Innovation Found(2021DQ02-0402)National Key Foundation for Exploring Scientific Instrument of China(2013YQ170463).
文摘The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the existing numerical inversion methods are still challenging due to the ill-posed nature of the first kind Fredholm integral equation and the contamination of the noises.This paper proposes a novel inversion algorithmto accelerate the convergence and enhance the precision using empirical truncated singular value decompositions(TSVD)and the linearized Bregman iteration.The L1 penalty term is applied to construct the objective function,and then the linearized Bregman iteration is utilized to obtain fast convergence.To reduce the complexity of the computation,empirical TSVD is proposed to compress the kernel matrix and determine the appropriate truncated position.This novel inversion method is validated using numerical simulations.The results indicate that the proposed novel method is significantly efficient and can achieve quick and effective data solutions with low signal-to-noise ratios.