Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau...Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.展开更多
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp...Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.展开更多
The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass ...The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur.Analytical and numerical models can be used to estimate the rock mass response to high internal pressure;however,the fitness of these models under different in situ stress conditions and cavern shapes has not been studied.In this paper,the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied.The analytical model is derived in detail and finite element(FE)models considering both two-dimensional(2D)and three-dimensional(3D)geometries are presented.These models are verified with field measurements from the LRC in Skallen,southwestern Sweden.The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights.For the case of anisotropic horizontal in situ stresses,as the conditions in Skallen,the 3D FE model is the best approach.展开更多
The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,con...The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses.展开更多
An analytical solution to the transient dynamic response of a cylindrical lining subjected to an internal loading was presented and the dynamic interaction between the lining and surrounding soil was considered. The l...An analytical solution to the transient dynamic response of a cylindrical lining subjected to an internal loading was presented and the dynamic interaction between the lining and surrounding soil was considered. The lining structure and the soil were treated as a cylindrical elastic shell and an infinite elastic compressible medium, respectively. A two-dimensional axisymmetric wave equation was derived from the governing equation of displacement by introducing the potential functions. Shell equation of motion was established based on continuity conditions. The closed-form solution for dynamic response of the lining due to an impact loading was obtained in Laplace transforms and inverse transforms. Detailed parametric studies were also presented to illustrate the influences of the Poisson ratio of soil, the dynamic shear moduli of both soil and lining and the thickness of lining on dynamic response of the lining.展开更多
The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave fiel...The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and effi- ciently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.展开更多
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the...The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.展开更多
To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with...To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with its huge scale and comprehensive benefits,is extremely complicated,and the design difficulty is greater than that of any other hydro project in the world.A series of new design theories and methods have been proposed and applied in the design and research process.Many key technological problems regarding hydraulic structures have been overcome,such as a gravity dam with multi-layer large discharge orifices,a hydropower station of giant generating units,and a giant continual multi-step ship lock with a high water head.展开更多
The natural history of Barrett's esophagus (BE) is difficult to quantify because,by definition,it should describe the course of the condition if left untreated.Pragmatically,we assume that patients with BE will re...The natural history of Barrett's esophagus (BE) is difficult to quantify because,by definition,it should describe the course of the condition if left untreated.Pragmatically,we assume that patients with BE will receive symptomatic treatment with acid suppression,usually a proton pump inhibitor,to treat their heartburn.This paper describes the development of complications of stricture,ulcer,dysplasia and adenocarcinoma from this standpoint.Controversies over the definition of BE and its implications in clinical practice are presented.The presence of intestinal metaplasia and its relevance to cancer risk is discussed,and the need to measure the extent of the Barrett's epithelium (long and short segments) using the Prague guidelines is emphasized.Guidelines and international consensus over the diagnosis and management of BE are being regularly updated.The need for expert consensus is important due to the lack of randomized trials in this area.After searching the literature,we have tried to collate the important studies regarding progression of Barrett's to dysplasia and adenocarcinoma.No therapeutic studies yet reported show a clear reduction in the development of cancer in BE.The effect of pharmacological and surgical intervention on the natural history of Barrett's is a subject of ongoing research,including the Barrett's Oesophagus Surveillance Study and the aspirin and esomeprazole cancer chemoprevention trial with interesting results.The geographical variation and the wide range of outcomes highlight the difficulty of providing an individualized risk profile to patients with BE.Future studies on the interaction of genome wide abnormalities in Barrett's and their interaction with environmental factors may allow individualization of the risk of cancer developing in BE.展开更多
The influence of the interaction between surrounding rock and lining on the long-term behaviour of a tunnel in service is significant.In this paper,we proposed a mechanical model of the circular lined tunnel with the ...The influence of the interaction between surrounding rock and lining on the long-term behaviour of a tunnel in service is significant.In this paper,we proposed a mechanical model of the circular lined tunnel with the alterable mechanical property under hydrostatic stress and radially inner surface pressure of the lining.The alterable mechanical properties of the surrounding rock and the lining are embodied by the changing of their elasticity modulus with service time and radial direction of the tunnel,respectively.The proposed mechanical model is successfully validated by comparison with the existing theoretical models and the numerical simulation,respectively.The influences of the main parameters of the proposed mechanical model,such as the radial power-law indexes and the time-varying coefficients of the surrounding rock and the lining,as well as the radially inner surface pressure of the lining,on the interface displacement and pressure between surrounding rock and lining are investigated.The research results can provide some valuable references for timely diagnosis and correct evaluation of the long-term behaviours of a tunnel in service.展开更多
Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigate...Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.展开更多
The ceramic lined pipes had been produced by gravitational separation SHS method and influential factors on combustion synthesis was investigated.The experimental results showed that the ceramic lined pipes had been...The ceramic lined pipes had been produced by gravitational separation SHS method and influential factors on combustion synthesis was investigated.The experimental results showed that the ceramic lined pipes had been produced easily under condition that selecting pipes well distributed on the wall thickness ,proper preheating temperature and appropriate additive.展开更多
The structural behavior of mechanically lined pipes (MLPs) during the spooling-on phase is investigated in this paper, motivated by their promising offshore applications relying on reel installation. By applying qua...The structural behavior of mechanically lined pipes (MLPs) during the spooling-on phase is investigated in this paper, motivated by their promising offshore applications relying on reel installation. By applying quasi 2D models, we first investigated the gripping stresses preserved in the MLP after the hydraulic expansion manufacturing process and the detachment of the liner under spooling-on curvatures. Furthermore, a comparative 3D finite element (FE) analysis for the liner wrinkling behaviors of MLP with different wall thicknesses of outer layers was performed and indicated that when the wall thickness of outer layer increases from 14.3 mm to 17.9 mm, MLP's critical spooling-on curvature increased more than 47%, reachin0.1432 rdd/m.展开更多
Seahorse embryos are brooded in the enclosed nutrient-rich environment of the male brood pouch,which may be prone to bacterial infection.The immune responses of interleukin(IL)genes in the brood pouch have not been we...Seahorse embryos are brooded in the enclosed nutrient-rich environment of the male brood pouch,which may be prone to bacterial infection.The immune responses of interleukin(IL)genes in the brood pouch have not been well studied.We identifi ed 13 interleukins in the lined seahorse Hippocampus erectus.Tissue-specifi c expression analysis revealed increased mRNA expression levels of il-1β,il-18,and il-8 in the brood pouch.When challenged with lipopolysaccharide or Vibrio parahaemolyticus,il-1βand il-18 were active as part of the acute and chronic infl ammatory responses,respectively.Importantly,il-8 may be involved in powerful antibacterial immune responses and may be induced by il-1βand il-18 via a process involving the nuclear factor-κB signaling pathway.These results suggest that il-1β,il-18,and il-8 may play key roles in the antibacterial immune defense of the brood pouch in male seahorses.展开更多
In situ stress condition in rock mass is influenced by both tectonic activity and geological environment such as faulting and shearing in the rock mass.This influence is of significance in the Himalayan region,where t...In situ stress condition in rock mass is influenced by both tectonic activity and geological environment such as faulting and shearing in the rock mass.This influence is of significance in the Himalayan region,where the tectonic movement is active,resulting in periodic dynamic earthquakes.Each large-scale earthquake causes both accumulation and sudden release of strain energy,instigating changes in the in situ stress environment in the rock mass.This paper first highlights the importance of the magnitude of the minimum principal stress in the design of unlined or shotcrete lined pressure tunnel as water conveyance system used for hydropower schemes.Then we evaluated the influence of local shear faults on the magnitude of the minimum principal stress along the shotcrete lined high pressure tunnel of Upper Tamakoshi Hydroelectric Project(UTHP)in Nepal.A detailed assessment of the in situ stress state is carried out using both measured data and three-dimensional(3D)numerical analyses with FLAC3D.Finally,analysis is carried out on the possible changes in the magnitude of the minimum principal stress in the rock mass caused by seismic movement(dynamic loading).A permanent change in the stress state at and nearby the area of shear zones along the tunnel alignment is found to be an eminent process.展开更多
The epithermal neutron shape factor (α) was determined in the permanent cadmium lined irradiation channel installed in the large outer irradiation site of the Nigeria Research Reactor-1 (NIRR- 1) by the cadmium cover...The epithermal neutron shape factor (α) was determined in the permanent cadmium lined irradiation channel installed in the large outer irradiation site of the Nigeria Research Reactor-1 (NIRR- 1) by the cadmium covered multimonitor method using the monitors Al-0.1% Au, Zr and Zn thin foils and Mo thin wire and was found to be -0.137 ± 0.018. The high negative value of α indicates a hardened epithermal neutron spectrum in the cadmium lined irradiation channel. The α value obtained was used in the single comparator method of ENAA (ko-ENAA) for the determination of the concentrations of elements in the standard reference material NIST 1515 Apple leaves using Al-0.1% Au thin foil as the single comparator. The concentrations of the elements Sm and Br were determined in the NIST 1515 Apple leaves because of their high Qo values and are in good agreement with the certified values.展开更多
With high rock slope in shiplock area, thin reinforced concrete lining walls are constructed for the shiplock system. The construction technology involves much complicated structures in formwork, frequent interference...With high rock slope in shiplock area, thin reinforced concrete lining walls are constructed for the shiplock system. The construction technology involves much complicated structures in formwork, frequent interference due to crossover working procedures, tight time schedule, high quality of reinforced concrete and showcase appearance requirements, hidden troubles affecting construction safety. With above-mentioned factors in consideration, a single-side-separated sliding formwork technology advanced from past sliding formwork experiences has been developed and applied successfully. This new technology is beneficial in quick and safe operation, capable to assure best quality and appearance of shiplock concrete works, and has filled up the gap in terms of construction sliding formwork in our country.展开更多
TO THE EDITORWith interest we read the article by Bani-Hani et al enrifled "Pathogenesis of columnar-lined esophagus", which has been published in the recent issue of World Journal of Gastroenterology. The review pr...TO THE EDITORWith interest we read the article by Bani-Hani et al enrifled "Pathogenesis of columnar-lined esophagus", which has been published in the recent issue of World Journal of Gastroenterology. The review profoundly adds to our understanding of columnar-lined esophagus (CLE) and clearly indicates that CLE represents an acquired condition and develops as a consequence of gastroesophageal reflux disease (GERD). However, it should be pointed out that inclusion of CLE-histopathology helps to define those at risk for dysplastic and malignant transformation. Histopathology characterizes nondysplastic and dyplastic (low-, high grade dysplasia) CLE.展开更多
The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The ...The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The specific deformation of the steel lining needs to be inside the acceptable value. This paper presents lined rock cavern (LRC) concept and specific deformations, which can occur under operation of underground gas storage. Analysis is performed with different (3D model and axis symmetrical) FEM models and analytical model. We made a comparison between analytical calculation and FEM calculation. Concrete wall is mechanically not regarded as reinforced concrete structure which means that concrete will crack. Finally, we determined the minimum value of Young's modulus, which satisfies the condition of maximum deformation of steel lining.展开更多
基金Fofinancially supported by the National Natural Science Foundation of China(Grant No.52271288)Peiyang Scholar Initiation Fund from Tianjin University。
文摘Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.
基金the financial support from the Natural Science Foundation of China (Nos.52179118,52209151 and 42307238)the Science and Technology Project of Jiangsu Provincial Department of Science and Technology-Carbon Emissions Peak and Carbon Neutrality Science and Technology Innovation Specia Fund Project (No.BK20220025)+3 种基金the Excellent Postdoctoral Program of Jiangsu Province (No.2023ZB602)the China Postdoctora Science Foundation (Nos.2023M733773 and 2023M733772)Xuzhou City Science and Technology Innovation Special Basic Research Plan (KC23045)State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,China University of Mining&Technology (No SKLGDUEK1916)。
文摘Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.
基金This work has been conducted as part of the HYBRIT research project RP-1.This research was financially supported by the Swedish Energy Agency(Grant No.42684e2).
文摘The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur.Analytical and numerical models can be used to estimate the rock mass response to high internal pressure;however,the fitness of these models under different in situ stress conditions and cavern shapes has not been studied.In this paper,the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied.The analytical model is derived in detail and finite element(FE)models considering both two-dimensional(2D)and three-dimensional(3D)geometries are presented.These models are verified with field measurements from the LRC in Skallen,southwestern Sweden.The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights.For the case of anisotropic horizontal in situ stresses,as the conditions in Skallen,the 3D FE model is the best approach.
基金supported by the Swedish Energy Agency(Grant Nos.42684-2,P2022-00209).
文摘The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses.
基金Project(51178342) supported by the National Natural Science Foundation of ChinaProject(20103718120005) supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘An analytical solution to the transient dynamic response of a cylindrical lining subjected to an internal loading was presented and the dynamic interaction between the lining and surrounding soil was considered. The lining structure and the soil were treated as a cylindrical elastic shell and an infinite elastic compressible medium, respectively. A two-dimensional axisymmetric wave equation was derived from the governing equation of displacement by introducing the potential functions. Shell equation of motion was established based on continuity conditions. The closed-form solution for dynamic response of the lining due to an impact loading was obtained in Laplace transforms and inverse transforms. Detailed parametric studies were also presented to illustrate the influences of the Poisson ratio of soil, the dynamic shear moduli of both soil and lining and the thickness of lining on dynamic response of the lining.
基金National Natural Science Foundation of China under Grants (51278327)the Tianjin Research Program of Application Foundation and Advanced Technology (14JCYBJC21900)
文摘The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and effi- ciently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.
基金supported by the Tianjin Research Program of Application Foundation Advanced Technology (14JCYBJC21900)the National Natural Science Foundation of China under grants 51278327
文摘The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.
文摘To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with its huge scale and comprehensive benefits,is extremely complicated,and the design difficulty is greater than that of any other hydro project in the world.A series of new design theories and methods have been proposed and applied in the design and research process.Many key technological problems regarding hydraulic structures have been overcome,such as a gravity dam with multi-layer large discharge orifices,a hydropower station of giant generating units,and a giant continual multi-step ship lock with a high water head.
文摘The natural history of Barrett's esophagus (BE) is difficult to quantify because,by definition,it should describe the course of the condition if left untreated.Pragmatically,we assume that patients with BE will receive symptomatic treatment with acid suppression,usually a proton pump inhibitor,to treat their heartburn.This paper describes the development of complications of stricture,ulcer,dysplasia and adenocarcinoma from this standpoint.Controversies over the definition of BE and its implications in clinical practice are presented.The presence of intestinal metaplasia and its relevance to cancer risk is discussed,and the need to measure the extent of the Barrett's epithelium (long and short segments) using the Prague guidelines is emphasized.Guidelines and international consensus over the diagnosis and management of BE are being regularly updated.The need for expert consensus is important due to the lack of randomized trials in this area.After searching the literature,we have tried to collate the important studies regarding progression of Barrett's to dysplasia and adenocarcinoma.No therapeutic studies yet reported show a clear reduction in the development of cancer in BE.The effect of pharmacological and surgical intervention on the natural history of Barrett's is a subject of ongoing research,including the Barrett's Oesophagus Surveillance Study and the aspirin and esomeprazole cancer chemoprevention trial with interesting results.The geographical variation and the wide range of outcomes highlight the difficulty of providing an individualized risk profile to patients with BE.Future studies on the interaction of genome wide abnormalities in Barrett's and their interaction with environmental factors may allow individualization of the risk of cancer developing in BE.
基金Project(U1934210) supported by the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of ChinaProject(8202037) supported by the Natural Science Foundation of Beijing,China。
文摘The influence of the interaction between surrounding rock and lining on the long-term behaviour of a tunnel in service is significant.In this paper,we proposed a mechanical model of the circular lined tunnel with the alterable mechanical property under hydrostatic stress and radially inner surface pressure of the lining.The alterable mechanical properties of the surrounding rock and the lining are embodied by the changing of their elasticity modulus with service time and radial direction of the tunnel,respectively.The proposed mechanical model is successfully validated by comparison with the existing theoretical models and the numerical simulation,respectively.The influences of the main parameters of the proposed mechanical model,such as the radial power-law indexes and the time-varying coefficients of the surrounding rock and the lining,as well as the radially inner surface pressure of the lining,on the interface displacement and pressure between surrounding rock and lining are investigated.The research results can provide some valuable references for timely diagnosis and correct evaluation of the long-term behaviours of a tunnel in service.
基金financial support from the National Natural Science Foundation of China (Nos. 51004084, 51274170)the Doctoral Fund of Ministry of Education of China (No. 20105121120002)
文摘Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.
文摘The ceramic lined pipes had been produced by gravitational separation SHS method and influential factors on combustion synthesis was investigated.The experimental results showed that the ceramic lined pipes had been produced easily under condition that selecting pipes well distributed on the wall thickness ,proper preheating temperature and appropriate additive.
基金supported by the Science Foundation of China University of Petroleum,Beijing (2462015YQ0415)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120007120002)
文摘The structural behavior of mechanically lined pipes (MLPs) during the spooling-on phase is investigated in this paper, motivated by their promising offshore applications relying on reel installation. By applying quasi 2D models, we first investigated the gripping stresses preserved in the MLP after the hydraulic expansion manufacturing process and the detachment of the liner under spooling-on curvatures. Furthermore, a comparative 3D finite element (FE) analysis for the liner wrinkling behaviors of MLP with different wall thicknesses of outer layers was performed and indicated that when the wall thickness of outer layer increases from 14.3 mm to 17.9 mm, MLP's critical spooling-on curvature increased more than 47%, reachin0.1432 rdd/m.
基金Supported by the National Science&Technology Fundamental Resources Investigation Program of China(No.2018FY100106),the National Natural Science Foundation of China(Nos.41825013,41806189)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0407)the K.C.Wong Education Foundation,and the Guangdong Special Support Program of Leading Scientifi c and Technological Innovation(No.2017TX04N442)。
文摘Seahorse embryos are brooded in the enclosed nutrient-rich environment of the male brood pouch,which may be prone to bacterial infection.The immune responses of interleukin(IL)genes in the brood pouch have not been well studied.We identifi ed 13 interleukins in the lined seahorse Hippocampus erectus.Tissue-specifi c expression analysis revealed increased mRNA expression levels of il-1β,il-18,and il-8 in the brood pouch.When challenged with lipopolysaccharide or Vibrio parahaemolyticus,il-1βand il-18 were active as part of the acute and chronic infl ammatory responses,respectively.Importantly,il-8 may be involved in powerful antibacterial immune responses and may be induced by il-1βand il-18 via a process involving the nuclear factor-κB signaling pathway.These results suggest that il-1β,il-18,and il-8 may play key roles in the antibacterial immune defense of the brood pouch in male seahorses.
文摘In situ stress condition in rock mass is influenced by both tectonic activity and geological environment such as faulting and shearing in the rock mass.This influence is of significance in the Himalayan region,where the tectonic movement is active,resulting in periodic dynamic earthquakes.Each large-scale earthquake causes both accumulation and sudden release of strain energy,instigating changes in the in situ stress environment in the rock mass.This paper first highlights the importance of the magnitude of the minimum principal stress in the design of unlined or shotcrete lined pressure tunnel as water conveyance system used for hydropower schemes.Then we evaluated the influence of local shear faults on the magnitude of the minimum principal stress along the shotcrete lined high pressure tunnel of Upper Tamakoshi Hydroelectric Project(UTHP)in Nepal.A detailed assessment of the in situ stress state is carried out using both measured data and three-dimensional(3D)numerical analyses with FLAC3D.Finally,analysis is carried out on the possible changes in the magnitude of the minimum principal stress in the rock mass caused by seismic movement(dynamic loading).A permanent change in the stress state at and nearby the area of shear zones along the tunnel alignment is found to be an eminent process.
文摘The epithermal neutron shape factor (α) was determined in the permanent cadmium lined irradiation channel installed in the large outer irradiation site of the Nigeria Research Reactor-1 (NIRR- 1) by the cadmium covered multimonitor method using the monitors Al-0.1% Au, Zr and Zn thin foils and Mo thin wire and was found to be -0.137 ± 0.018. The high negative value of α indicates a hardened epithermal neutron spectrum in the cadmium lined irradiation channel. The α value obtained was used in the single comparator method of ENAA (ko-ENAA) for the determination of the concentrations of elements in the standard reference material NIST 1515 Apple leaves using Al-0.1% Au thin foil as the single comparator. The concentrations of the elements Sm and Br were determined in the NIST 1515 Apple leaves because of their high Qo values and are in good agreement with the certified values.
文摘With high rock slope in shiplock area, thin reinforced concrete lining walls are constructed for the shiplock system. The construction technology involves much complicated structures in formwork, frequent interference due to crossover working procedures, tight time schedule, high quality of reinforced concrete and showcase appearance requirements, hidden troubles affecting construction safety. With above-mentioned factors in consideration, a single-side-separated sliding formwork technology advanced from past sliding formwork experiences has been developed and applied successfully. This new technology is beneficial in quick and safe operation, capable to assure best quality and appearance of shiplock concrete works, and has filled up the gap in terms of construction sliding formwork in our country.
文摘TO THE EDITORWith interest we read the article by Bani-Hani et al enrifled "Pathogenesis of columnar-lined esophagus", which has been published in the recent issue of World Journal of Gastroenterology. The review profoundly adds to our understanding of columnar-lined esophagus (CLE) and clearly indicates that CLE represents an acquired condition and develops as a consequence of gastroesophageal reflux disease (GERD). However, it should be pointed out that inclusion of CLE-histopathology helps to define those at risk for dysplastic and malignant transformation. Histopathology characterizes nondysplastic and dyplastic (low-, high grade dysplasia) CLE.
文摘The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The specific deformation of the steel lining needs to be inside the acceptable value. This paper presents lined rock cavern (LRC) concept and specific deformations, which can occur under operation of underground gas storage. Analysis is performed with different (3D model and axis symmetrical) FEM models and analytical model. We made a comparison between analytical calculation and FEM calculation. Concrete wall is mechanically not regarded as reinforced concrete structure which means that concrete will crack. Finally, we determined the minimum value of Young's modulus, which satisfies the condition of maximum deformation of steel lining.