An analysis of the girth weldability of Baosteel X80 UOE (U-ing-O-ing-Expanding) linepipes was conducted using manual shielded metal arc welding (SMAW) and semiautomatic self-shielded flux cored wire arc welding ...An analysis of the girth weldability of Baosteel X80 UOE (U-ing-O-ing-Expanding) linepipes was conducted using manual shielded metal arc welding (SMAW) and semiautomatic self-shielded flux cored wire arc welding (FCAW). A technical specification for the optimum quality of a girth welding joint was obtained through a large amount of testing. According to the requirements of America Petroleum Institute(API) standard 1104 and the standards of the 2nd West-East natural gas transmission pipeline project,the mechanical properties of a girth welding joint were estimated. In addition,the effect of the girth welding procedure specifications and the consumable' s suitability on the impact toughness of the girth welding joint was discussed.展开更多
Baoshan Iron & Steel Co.,Ltd., (referred to as Baosteel) in China first succeeded in developing the U-ing-O- ing-Expanding (UOE) longitudinal submerged arc welded pipes (SAWLs) offshore linepipe of a maximum th...Baoshan Iron & Steel Co.,Ltd., (referred to as Baosteel) in China first succeeded in developing the U-ing-O- ing-Expanding (UOE) longitudinal submerged arc welded pipes (SAWLs) offshore linepipe of a maximum thickness/ outside diameter (T/D) 0.042 in 2011. Described in this paper is the research and development of the X70 UOE SAWL pipes by the company. The result shows that the said X70 linepipe has been in compliance with relevant requirements as specified in Specifications DNV-OS-F101 ,and has been successfully used in the South China Sea deepwater gas pipeline project.展开更多
Separation is a commonly observed phenomenon during drop weight tear testing in high-toughness linepipe steels. Severe separation is harmful because it may cause fracturing or bursting of pipes. In this study, a quant...Separation is a commonly observed phenomenon during drop weight tear testing in high-toughness linepipe steels. Severe separation is harmful because it may cause fracturing or bursting of pipes. In this study, a quantitative measurement of separation was proposed, and using this new method, a relationship between the separation and microstructure was determined and discussed. The microstructures observed using optical and scanning electron microscopy revealed that the separation was related to the mixed ferfitic and bainitic microstructures, or rather,it was related to the carbon enrichment in bainite.展开更多
Ultra fast cooling(UFC) processing after hot deformation was conducted on X70 and X80 linepipe steels. Tensile and charpy impact properties of both steels have been investigated in this work. The results have shown ...Ultra fast cooling(UFC) processing after hot deformation was conducted on X70 and X80 linepipe steels. Tensile and charpy impact properties of both steels have been investigated in this work. The results have shown that the mechanical properties satisfy all the standard requirements of the X70 and X80 steels. UFC results in a presence of microstructure containing quasi polygonal(QF), acicular ferrite(AF) and granular bainite(GB). The alloying elements and UFC enhance the strengthening contribution caused by solid solution, dispersion, dislocation and precipitation strengthening. The size and distribution of precipitates in the linepipe steels are fine and dispersed. MA is also homogeneously dispersed due to UFC. Average grain size in the X80 steel is finer than that in the X70 steel. The volume fractions of secondary phases in the X80 steel are greater than those in the X70 steel. The X80 steel remains finer and more dispersed precipitates compared to the X70 steel. As a result, the tensile properties of X80 steel are higher than those of X70 steel. The Charpy absorbed energies of X70 and X80 steels at-10 ℃ reached 436 and 460 J, respectively. They reached 433 and 461 J at-15 ℃, respectively. This is mainly attributed to the presence of larger amounts of AFs in the X80 steel. A microstructure of AF for the X80 steel results in combining high strength and high toughness.展开更多
To examine the effect of processing parameters on microstructural evolution and to obtain the excellent combination of strength and toughness, simulation of thermo-mechanical processing was conducted using the Gleeble...To examine the effect of processing parameters on microstructural evolution and to obtain the excellent combination of strength and toughness, simulation of thermo-mechanical processing was conducted using the Gleeble machine. Trial production was then conducted under the conditions obtained by Gleeble tests. Based on the results of microstructure analysis and mechanical property evaluation, the relationship between microstructural features and mechanical properties was elucidated. The result shows that the volume fraction of constituted phases can be controlled through adjusting the cooling rate and finish cooling temperature in order to get different strength levels. As cooling rate increases, the volume fraction of upper bainite increases, which leads to the increase of strength. The upper shelf energy (USE) increases with increasing volume fraction of acicular ferrite in bainite base because of the small effective acicular ferrite grain size. Ductile-brittle transition temperature (DBTT) decreases with increasing acicular ferrite volume fraction. High reduction in the rough stage has great influence on grain refinement.展开更多
In the current study, the transformation in the composition of non-metallic inclusions from the molten steel to the solidified steel was studied and the composition distribution of inclusions on the cross section of a...In the current study, the transformation in the composition of non-metallic inclusions from the molten steel to the solidified steel was studied and the composition distribution of inclusions on the cross section of a linepine continuous casting slab was predicted. During cooling and solidification of the continuous casting strand, Al_(2)O_(3)-CaO inclusions reacted with the bulk steel and transformed to CaS-Al_(2)O_(3)-MgO-(CaO) ones in the continuous casting slab. The composition of inclusions on the cross section of the slab varied with locations due to the varied cooling rate. A model was established to predict the distribution of the composition of inclusions on the cross section of the continuous casting slab, coupling solidification and heat transfer of the continuous casting slab, the kinetic mass transfer of the dissolved elements in the solid steel, and thermodynamic calculation of inclusion transformation at different temperatures. The composition transformation of inclusions mainly occurred at the temperature between the liquidus and solidus of the linepipe steel. Inclusions were mainly CaS-Al_(2)O_(3)-MgO-(CaO) in slab center and were MgO-Al_(2)O_(3)-CaO-CaS within the subsurface of the slab. In the slab, the transformation fraction of inclusions was less than 10 % at corners while it reached 70 % at 50 mm below the surface of the slab.展开更多
The stress oriented hydrogen induced cracking (SOHIC) is a typical hydrogen embrittlement phenomenon occurring in the linepipe steels exposed to sour environment containing H 2 S gas.However,even recently,the cracking...The stress oriented hydrogen induced cracking (SOHIC) is a typical hydrogen embrittlement phenomenon occurring in the linepipe steels exposed to sour environment containing H 2 S gas.However,even recently,the cracking mechanism of SOHIC has not been clarified because of lacking in the empirical data on the actual failure mode of SOHIC cracking.The factors affecting SOHIC are discussed in terms of metallurgy of high strength linepipe steel and hydrogen electrochemistry.The cracking mechanisms of SOHIC are examined by comparing them with the empirical failure mode of SOHIC which is developed by observation of the actual fracture sites of the hydrogen induced blister cracking (HIBC) and secondary cracks.Finally,the correlation between SOHIC and HIC is discussed.展开更多
Advanced high strength steels for pipeline applications,e.g.X80 grades,have complex microstructures and are frequently microalloyed with Nb.In the hot rolled product it is sought to have Nb precipitated as Nb(CN).Howe...Advanced high strength steels for pipeline applications,e.g.X80 grades,have complex microstructures and are frequently microalloyed with Nb.In the hot rolled product it is sought to have Nb precipitated as Nb(CN).However,when processing these steels Nb may be in solution and critically affects the microstructure evolution,e.g.austenite decomposition on the run-out table of a hot mill.Further,microstructure changes in the heat affected zone (HAZ) during girth welding of these linepipe steels may occur with Nb precipitated or in solution.In the HAZ,depending on welding procedures,the material undergoes a number of austenite formation and decomposition cycles and the amount of Nb in solution varies along these stages.In selected positions of the HAZ,thermal cycles peak at the intercritical region and the partial formation of austenite and subsequent decomposition constitutes additional complexity.Developing reliable process models for run-out table cooling and the HAZ hinges on an accurate tracking of microstructure evolution,which is strongly influenced by the amount of Nb in solution.The present study provides more insight into the effect of Nb on austenite formation and decomposition.Firstly,a novel experimental methodology is presented to measure quantitatively the effect of Nb on transformation temperatures pertinent to austenite decomposition,notably ferrite.A model for ferrite formation that accounts for solute drag of Nb is proposed to describe the experimental observations.Secondly,an experimental study will be presented to quantify the effect of Nb in and out of solution on austenite formation in the intercritical region.It is found that the morphology of intercritical austenite,as well as the kinetics of its formation is strongly affected by the starting microstructure and the state of Nb.展开更多
The HIPERC study was a European research project involving several steel companies and research organisations which examined the effects of alloying elements and processing conditions in low carbon (【0.09 wt %),niobi...The HIPERC study was a European research project involving several steel companies and research organisations which examined the effects of alloying elements and processing conditions in low carbon (【0.09 wt %),niobium containing (0.05%-0.12 wt.%) steels.Laboratory-scale heats and pilot rolling trials simulating air and water-cooled plate production as well as hot-rolled strip production were made and the effects of C,Mn,Ni,Cu,Cr,Mo,Nb,Ti and B on transformation characteristics and temperatures of recrystallisation determined.Regression equations for the characterisation of microstructure,tensile and impact properties and for the weldability of these steels were derived.Steels were manufactured and processed into plate and coil-plate by three steel companies and pipe produced from both products.Properties from these,plus thicker plate for structural use,were determined and these compared well with the values predicted from the regression equations.The project has shown that excellent combinations of strength,toughness and weldability can be obtained for a wide variety of applications.Economic benefits were seen and recommendations on altering the limits for niobium in Euronorms have been proposed.展开更多
Microalloyed linepipe steels were first introduced in 1959 at strength levels around 52-60 ksi [1] [2].The steels were generally strengthened by niobium or vanadium used singly.As strengths levels increased to X-70 in...Microalloyed linepipe steels were first introduced in 1959 at strength levels around 52-60 ksi [1] [2].The steels were generally strengthened by niobium or vanadium used singly.As strengths levels increased to X-70 in the early 1970’s niobium and vanadium were used in combination and controlled rolling was introduced on a broad basis.Higher strengths decrease tolerance for impurities and non-metallic inclusions which required improved steelmaking practices.Sulfur,carbon,and nitrogen were reduced and continuous casting was increasingly applied which required improved ladle refining and deoxidation practices.Niobium-molybdenum steels were introduced by IPSCO in 1972 [3] and by Italsider in 1974 [4].Steels with higher niobium contents were also introduced in the early 1970’s but available steelmaking technologies limited the use of optimum niobium to carbon ratios,i.e.those approaching stoichiometry.Nevertheless the steels benefited from the effect of niobium in retarding austenite recrystallization at relatively high rolling temperatures and they developed attractive combinations of strength and toughness in old manufacturing facilities using simple (relaxed) rolling schedules.Fluctuations in the price of molybdenum and vanadium in the past decade and expanded application of API Grade X-80 linepipe,have led to more widespread use of niobium contents up to 0.11 percent,in combination with 0.02-0.03 percent carbon (near stoichiometry) thus maximizing the effects of solute niobium during rolling,in lowering transformation temperature,and thereby reducing reliance on other alloying,often expensive,elements.The history of these developments will be presented and applications of the concept will be summarized.展开更多
The addition of microalloying elements (MAE) to low C-Mn-Si HSLA steels has led to many benefits to the producers,fabricators and end-users.Microstructural improvements such as microstructural refinement,higher disloc...The addition of microalloying elements (MAE) to low C-Mn-Si HSLA steels has led to many benefits to the producers,fabricators and end-users.Microstructural improvements such as microstructural refinement,higher dislocation and sub-grain boundary densities and finer M-A-C distributions have led to higher strength,improved toughness and better formability.These improvements can often be traced to the MA addition.In steels for load-bearing applications,the combination of MAE with hardenability additions (Cr,Mo,B,etc.) and lower transformation temperatures has led to much higher strength levels than what were available a few years ago.The resulting nonpolygonal,bainitic and martensitic ferrite microstructures have not only higher strengths but also adequate levels of improved ductility and toughness.Hot strip,plate and pipe applications have benefitted from these developments.Similar improvements have been found in the microalloyed forging steels,where the change from pearlite-ferrite to bainitic ferrite microstructures has led to higher strengths and improved high-cycle fatigue resistance,with little penalty in ductility and toughness.In the cold rolled gauges,both the so-called Advanced High Strength Steels (DP,TRIP and Complex Phase Steels) and the martensitic direct-quenched and press-quenched steels,along with the Interstitial-Free steels,have benefited from MAE additions,especially in the very popular zinc-coated sheet form.This paper will briefly review each of these topic areas,and the underlying physical metallurgy will be discussed.展开更多
In this paper,the product designs,mechanical properties and microstructure of ultra-high strength linepipe steel in grade X120 strip with a thickness of 16mm have been shown and analyzed systematically.The tensile tes...In this paper,the product designs,mechanical properties and microstructure of ultra-high strength linepipe steel in grade X120 strip with a thickness of 16mm have been shown and analyzed systematically.The tensile test results with different directions,including transverse,longitudinal and 30° to the rolling direction,showed that the yield strength and ultimate tensile strength reach and exceed 900MPa and 1000MPa respectively,which are far higher than requirements of X120,such as 827MPa and 931MPa.On the other hand,as shown from the test results of Charpy impact tests at different temperatures from 20 ℃ to-60 ℃,the absorbed energies and fracture shear area at-60℃ are about 200J and 100% respectively,which is very exciting and interesting.In order to clarify the strengthening mechanism and effect of X120 strip further,microstructure has been observed through metallography.Analysis of the metallography revealedthat the microstructure was composed of lower bainitewith a size of 1um and fine M/A components.The X120 strip was formed into 1420 mm diameter spiral welded pipe in Huabei pipe mill.Tested results showed that ultra-high strength and high toughness linepipe could be achieved through reasonable alloy composition design and optimized rolling processes.展开更多
文摘An analysis of the girth weldability of Baosteel X80 UOE (U-ing-O-ing-Expanding) linepipes was conducted using manual shielded metal arc welding (SMAW) and semiautomatic self-shielded flux cored wire arc welding (FCAW). A technical specification for the optimum quality of a girth welding joint was obtained through a large amount of testing. According to the requirements of America Petroleum Institute(API) standard 1104 and the standards of the 2nd West-East natural gas transmission pipeline project,the mechanical properties of a girth welding joint were estimated. In addition,the effect of the girth welding procedure specifications and the consumable' s suitability on the impact toughness of the girth welding joint was discussed.
文摘Baoshan Iron & Steel Co.,Ltd., (referred to as Baosteel) in China first succeeded in developing the U-ing-O- ing-Expanding (UOE) longitudinal submerged arc welded pipes (SAWLs) offshore linepipe of a maximum thickness/ outside diameter (T/D) 0.042 in 2011. Described in this paper is the research and development of the X70 UOE SAWL pipes by the company. The result shows that the said X70 linepipe has been in compliance with relevant requirements as specified in Specifications DNV-OS-F101 ,and has been successfully used in the South China Sea deepwater gas pipeline project.
文摘Separation is a commonly observed phenomenon during drop weight tear testing in high-toughness linepipe steels. Severe separation is harmful because it may cause fracturing or bursting of pipes. In this study, a quantitative measurement of separation was proposed, and using this new method, a relationship between the separation and microstructure was determined and discussed. The microstructures observed using optical and scanning electron microscopy revealed that the separation was related to the mixed ferfitic and bainitic microstructures, or rather,it was related to the carbon enrichment in bainite.
基金Funded by the National High-Tech Research and Development Program of of China(863 Program)(No.2015AA03A501)Shenyang City Application Basic Research Project(No.F13-316-1-15)the State Key Laboratory Opening Project of Northeastern University(No.12SYS05)
文摘Ultra fast cooling(UFC) processing after hot deformation was conducted on X70 and X80 linepipe steels. Tensile and charpy impact properties of both steels have been investigated in this work. The results have shown that the mechanical properties satisfy all the standard requirements of the X70 and X80 steels. UFC results in a presence of microstructure containing quasi polygonal(QF), acicular ferrite(AF) and granular bainite(GB). The alloying elements and UFC enhance the strengthening contribution caused by solid solution, dispersion, dislocation and precipitation strengthening. The size and distribution of precipitates in the linepipe steels are fine and dispersed. MA is also homogeneously dispersed due to UFC. Average grain size in the X80 steel is finer than that in the X70 steel. The volume fractions of secondary phases in the X80 steel are greater than those in the X70 steel. The X80 steel remains finer and more dispersed precipitates compared to the X70 steel. As a result, the tensile properties of X80 steel are higher than those of X70 steel. The Charpy absorbed energies of X70 and X80 steels at-10 ℃ reached 436 and 460 J, respectively. They reached 433 and 461 J at-15 ℃, respectively. This is mainly attributed to the presence of larger amounts of AFs in the X80 steel. A microstructure of AF for the X80 steel results in combining high strength and high toughness.
文摘To examine the effect of processing parameters on microstructural evolution and to obtain the excellent combination of strength and toughness, simulation of thermo-mechanical processing was conducted using the Gleeble machine. Trial production was then conducted under the conditions obtained by Gleeble tests. Based on the results of microstructure analysis and mechanical property evaluation, the relationship between microstructural features and mechanical properties was elucidated. The result shows that the volume fraction of constituted phases can be controlled through adjusting the cooling rate and finish cooling temperature in order to get different strength levels. As cooling rate increases, the volume fraction of upper bainite increases, which leads to the increase of strength. The upper shelf energy (USE) increases with increasing volume fraction of acicular ferrite in bainite base because of the small effective acicular ferrite grain size. Ductile-brittle transition temperature (DBTT) decreases with increasing acicular ferrite volume fraction. High reduction in the rough stage has great influence on grain refinement.
基金supported financially by the National Science Foundation China(Nos.U1860206 and 51725402)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-17-001C2 and FRF-TP-19-037A2Z)+1 种基金the High Steel Center(HSC)at Yanshan UniversityBeijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials(ICSM)and the High Quality Steel Consortium(HQSC)at University of Science and Technology Beijing(USTB),China。
文摘In the current study, the transformation in the composition of non-metallic inclusions from the molten steel to the solidified steel was studied and the composition distribution of inclusions on the cross section of a linepine continuous casting slab was predicted. During cooling and solidification of the continuous casting strand, Al_(2)O_(3)-CaO inclusions reacted with the bulk steel and transformed to CaS-Al_(2)O_(3)-MgO-(CaO) ones in the continuous casting slab. The composition of inclusions on the cross section of the slab varied with locations due to the varied cooling rate. A model was established to predict the distribution of the composition of inclusions on the cross section of the continuous casting slab, coupling solidification and heat transfer of the continuous casting slab, the kinetic mass transfer of the dissolved elements in the solid steel, and thermodynamic calculation of inclusion transformation at different temperatures. The composition transformation of inclusions mainly occurred at the temperature between the liquidus and solidus of the linepipe steel. Inclusions were mainly CaS-Al_(2)O_(3)-MgO-(CaO) in slab center and were MgO-Al_(2)O_(3)-CaO-CaS within the subsurface of the slab. In the slab, the transformation fraction of inclusions was less than 10 % at corners while it reached 70 % at 50 mm below the surface of the slab.
文摘The stress oriented hydrogen induced cracking (SOHIC) is a typical hydrogen embrittlement phenomenon occurring in the linepipe steels exposed to sour environment containing H 2 S gas.However,even recently,the cracking mechanism of SOHIC has not been clarified because of lacking in the empirical data on the actual failure mode of SOHIC cracking.The factors affecting SOHIC are discussed in terms of metallurgy of high strength linepipe steel and hydrogen electrochemistry.The cracking mechanisms of SOHIC are examined by comparing them with the empirical failure mode of SOHIC which is developed by observation of the actual fracture sites of the hydrogen induced blister cracking (HIBC) and secondary cracks.Finally,the correlation between SOHIC and HIC is discussed.
基金financial support by the Natural Sciences and Engineering Research Council of Canada(NSERC)Evraz Inc.NATrans Canada Pipelines,Ltd.
文摘Advanced high strength steels for pipeline applications,e.g.X80 grades,have complex microstructures and are frequently microalloyed with Nb.In the hot rolled product it is sought to have Nb precipitated as Nb(CN).However,when processing these steels Nb may be in solution and critically affects the microstructure evolution,e.g.austenite decomposition on the run-out table of a hot mill.Further,microstructure changes in the heat affected zone (HAZ) during girth welding of these linepipe steels may occur with Nb precipitated or in solution.In the HAZ,depending on welding procedures,the material undergoes a number of austenite formation and decomposition cycles and the amount of Nb in solution varies along these stages.In selected positions of the HAZ,thermal cycles peak at the intercritical region and the partial formation of austenite and subsequent decomposition constitutes additional complexity.Developing reliable process models for run-out table cooling and the HAZ hinges on an accurate tracking of microstructure evolution,which is strongly influenced by the amount of Nb in solution.The present study provides more insight into the effect of Nb on austenite formation and decomposition.Firstly,a novel experimental methodology is presented to measure quantitatively the effect of Nb on transformation temperatures pertinent to austenite decomposition,notably ferrite.A model for ferrite formation that accounts for solute drag of Nb is proposed to describe the experimental observations.Secondly,an experimental study will be presented to quantify the effect of Nb in and out of solution on austenite formation in the intercritical region.It is found that the morphology of intercritical austenite,as well as the kinetics of its formation is strongly affected by the starting microstructure and the state of Nb.
基金The project,RFSR-CT-2005-00027 ,was financially supported by the Research Fund for Coal and Steel of the European Community
文摘The HIPERC study was a European research project involving several steel companies and research organisations which examined the effects of alloying elements and processing conditions in low carbon (【0.09 wt %),niobium containing (0.05%-0.12 wt.%) steels.Laboratory-scale heats and pilot rolling trials simulating air and water-cooled plate production as well as hot-rolled strip production were made and the effects of C,Mn,Ni,Cu,Cr,Mo,Nb,Ti and B on transformation characteristics and temperatures of recrystallisation determined.Regression equations for the characterisation of microstructure,tensile and impact properties and for the weldability of these steels were derived.Steels were manufactured and processed into plate and coil-plate by three steel companies and pipe produced from both products.Properties from these,plus thicker plate for structural use,were determined and these compared well with the values predicted from the regression equations.The project has shown that excellent combinations of strength,toughness and weldability can be obtained for a wide variety of applications.Economic benefits were seen and recommendations on altering the limits for niobium in Euronorms have been proposed.
文摘Microalloyed linepipe steels were first introduced in 1959 at strength levels around 52-60 ksi [1] [2].The steels were generally strengthened by niobium or vanadium used singly.As strengths levels increased to X-70 in the early 1970’s niobium and vanadium were used in combination and controlled rolling was introduced on a broad basis.Higher strengths decrease tolerance for impurities and non-metallic inclusions which required improved steelmaking practices.Sulfur,carbon,and nitrogen were reduced and continuous casting was increasingly applied which required improved ladle refining and deoxidation practices.Niobium-molybdenum steels were introduced by IPSCO in 1972 [3] and by Italsider in 1974 [4].Steels with higher niobium contents were also introduced in the early 1970’s but available steelmaking technologies limited the use of optimum niobium to carbon ratios,i.e.those approaching stoichiometry.Nevertheless the steels benefited from the effect of niobium in retarding austenite recrystallization at relatively high rolling temperatures and they developed attractive combinations of strength and toughness in old manufacturing facilities using simple (relaxed) rolling schedules.Fluctuations in the price of molybdenum and vanadium in the past decade and expanded application of API Grade X-80 linepipe,have led to more widespread use of niobium contents up to 0.11 percent,in combination with 0.02-0.03 percent carbon (near stoichiometry) thus maximizing the effects of solute niobium during rolling,in lowering transformation temperature,and thereby reducing reliance on other alloying,often expensive,elements.The history of these developments will be presented and applications of the concept will be summarized.
文摘The addition of microalloying elements (MAE) to low C-Mn-Si HSLA steels has led to many benefits to the producers,fabricators and end-users.Microstructural improvements such as microstructural refinement,higher dislocation and sub-grain boundary densities and finer M-A-C distributions have led to higher strength,improved toughness and better formability.These improvements can often be traced to the MA addition.In steels for load-bearing applications,the combination of MAE with hardenability additions (Cr,Mo,B,etc.) and lower transformation temperatures has led to much higher strength levels than what were available a few years ago.The resulting nonpolygonal,bainitic and martensitic ferrite microstructures have not only higher strengths but also adequate levels of improved ductility and toughness.Hot strip,plate and pipe applications have benefitted from these developments.Similar improvements have been found in the microalloyed forging steels,where the change from pearlite-ferrite to bainitic ferrite microstructures has led to higher strengths and improved high-cycle fatigue resistance,with little penalty in ductility and toughness.In the cold rolled gauges,both the so-called Advanced High Strength Steels (DP,TRIP and Complex Phase Steels) and the martensitic direct-quenched and press-quenched steels,along with the Interstitial-Free steels,have benefited from MAE additions,especially in the very popular zinc-coated sheet form.This paper will briefly review each of these topic areas,and the underlying physical metallurgy will be discussed.
文摘In this paper,the product designs,mechanical properties and microstructure of ultra-high strength linepipe steel in grade X120 strip with a thickness of 16mm have been shown and analyzed systematically.The tensile test results with different directions,including transverse,longitudinal and 30° to the rolling direction,showed that the yield strength and ultimate tensile strength reach and exceed 900MPa and 1000MPa respectively,which are far higher than requirements of X120,such as 827MPa and 931MPa.On the other hand,as shown from the test results of Charpy impact tests at different temperatures from 20 ℃ to-60 ℃,the absorbed energies and fracture shear area at-60℃ are about 200J and 100% respectively,which is very exciting and interesting.In order to clarify the strengthening mechanism and effect of X120 strip further,microstructure has been observed through metallography.Analysis of the metallography revealedthat the microstructure was composed of lower bainitewith a size of 1um and fine M/A components.The X120 strip was formed into 1420 mm diameter spiral welded pipe in Huabei pipe mill.Tested results showed that ultra-high strength and high toughness linepipe could be achieved through reasonable alloy composition design and optimized rolling processes.