On February 25, the Unit 1 of Ling’ao Nuclear Power Plant phase II underwent a 41-day-long hot functional test successfully with its major systems satisfying the requirements for
Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant,the first commercial heavy water reactor nuclear power plant in China,was the biggest trade project performed between the governments of China and Canada.As the owner,the Thir...Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant,the first commercial heavy water reactor nuclear power plant in China,was the biggest trade project performed between the governments of China and Canada.As the owner,the Third Qinshan Nuclear Power Company(TQNPC)persisted in independent innovation management during the project construction,commissioning and self-dependent operation,efficiently realizing the three controls of the project,i.e.quality control,schedule control and investment control,and persisted in technical improvement on the basis of digestion and absorption of CANDU-6 technology to improve the unit safety and reliability.The project construction practice has helped China's nuclear power project management to becomeprogrammed,computerized,standardized and internationalized management from the existing basis.After completion of the project,with unit safe and steady operation as the prerequisite,TQNPC performed several technical modifications and innovations to continuously improve the unit performance.In the area of staff development,TQNPC paid much attention to cultivation of corporate culture,strengthed staff training and built up a good circulating mechanism with staff training and project construction promoting each other.Further to "Zero Breakthrough" and a new step forward of locolization successfully realized in Qinshan Nuclear Power Plant and Nuclear Power Qinshan Joint Venture Company,the improvement and developemnt of nuclear power project management level in Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant provided reference for promotion of nuclear power development in China and standardized management of introducing large imported project.展开更多
Power generating equipment supply contract for Huaneng Nantong Power Plant Phase Ⅱ project affiliated to Huaneng International Electric Power Stock Company Ltd. was signed at the People’s Great Hall on June 28, 1996...Power generating equipment supply contract for Huaneng Nantong Power Plant Phase Ⅱ project affiliated to Huaneng International Electric Power Stock Company Ltd. was signed at the People’s Great Hall on June 28, 1996, Shi Dazhen, Minister of Electric Power, Ye Qing, Vice-chairman of the State Planning Commission, Zhang Youcai, Vice Minister of Finance and展开更多
China and Canada nailed down a deal to build the third phase of the Qinshan Nuclear Power Plant in Zhejiang Province in East China on Nov. 26, 1996. The contract was signed in Shanghai by China National Nuclear Corp (...China and Canada nailed down a deal to build the third phase of the Qinshan Nuclear Power Plant in Zhejiang Province in East China on Nov. 26, 1996. The contract was signed in Shanghai by China National Nuclear Corp (CNNC) and Atomic Energy of Canada Ltd(AECL). AECL will construct two 700 MW heavy water reactors for the Chinese nuclear power plant.展开更多
The paper reports some technical solutions, which suggested or used for increasing of environmental protection during accidents at NPPs. For NNPs with two protective shells and pressure release system such as WWER-100...The paper reports some technical solutions, which suggested or used for increasing of environmental protection during accidents at NPPs. For NNPs with two protective shells and pressure release system such as WWER-1000 a comprehensive, passive-mode environmental protection system of decontamination of the radioactive steam-air mixture from the containment and the intercontainment area was suggested. This system includes the “wet” stage (scrubbers, etc.), the “dry” stage (sorption module), and also an ejector, which in a passive mode is capable of solving the multi-purpose task of decontamination of the air-steam mixture. For WWER-440/230 NPPs three protection levels: 1) a jet-vortex condenser;2) the spray system;3) a sorption module were suggested and installed. For modern designs of new generation NPPs, which do not provide for pressure release systems, a new passive filtering system together with the passive heat-removal system, which can be used during severe accidents in case all power supply units become unavailable, was proposed and after modernization was installed at the KudanKulam NPP (India).展开更多
Phase field simulations of phase separation in Fe-Cr binary alloys were performed by using the Cahn-Hilliard diffusion function. A new mobility model in relation to aging temperature and Cr content was used in the sim...Phase field simulations of phase separation in Fe-Cr binary alloys were performed by using the Cahn-Hilliard diffusion function. A new mobility model in relation to aging temperature and Cr content was used in the simulations. Two alloys of Fe-30at%Cr and Fe-35at%Cr were investigated at two different aging temperatures of 573 and 673 K. The phase separation kinetics was found to consist of three stages: wavelength modulation, amplitude increase, and coarsening of Cr-enriched regions. A higher thermal aging temperature accelerated the phase separation and increased the wavelength of concentration fluctuation. While the effect of Cr content on the phase separation kinetics was slight, Fe-Cr alloys with a higher Cr content were found to generate a larger number and a finer size of Cr-enriched regions. The simulation results provide consultation for design and safe operation of duplex stainless steel pipes in nuclear power plants.展开更多
Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low co...Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low cost simplified innovative separator using lattice core configuration is proposed where swirling is caused by the orthogonal driving flow. The performance of the separator has been assessed numerically with the commercial CFD code FLUENT 14.0. The numerical analysis is compared with the experiment. The geometry and flow conditions are chosen according to the experiment. In the analysis, standard k – e and realizable k – e turbulence models are implemented. The prediction of maximum air void fraction with realizable k – e model was almost the same as input air void fraction but the void fraction computed by standard k – e model was compared better with the experimental results than the realizable k – e model. Some discrepancies in flow pattern between the experimental and simulation results are observed which might be due to the difference of nozzle shape. However, a more detailed model is necessary to arrive at the final conclusion.展开更多
The Floating nuclear power plant grid is composed of power generation,in-station power supply and external power delivery.To ensure the safety of the nuclear island,the in-station system adopts a special power supply ...The Floating nuclear power plant grid is composed of power generation,in-station power supply and external power delivery.To ensure the safety of the nuclear island,the in-station system adopts a special power supply mode,while the external power supply needs to be adapted to different types of external systems.Because of frequent single phase-ground faults and various fault forms,the fault line selection protection should be accurate,sensitive and adaptive.This paper presents a fault line selection method in cooperation with multi-mode grounding control.Based on the maximum united energy entropy ratio(MUEER),the optimal wavelet basis function and decomposition scale are adaptively chosen,while the fault line is selected by wavelet transform modulus maxima(WTMM).For high-impedance faults(HIFs),to enlarge the fault feature,the system grounding mode can be switched by the multi-mode grounding control.Based on the characteristic of HIFs,the fault line can be selected by comparing phase differences of zero-sequence current mutation and fault phase voltage mutation before and after the fault.Simulation results using MATLAB/Simulink show the effectiveness of the proposed method in solving the protection problems.展开更多
文摘On February 25, the Unit 1 of Ling’ao Nuclear Power Plant phase II underwent a 41-day-long hot functional test successfully with its major systems satisfying the requirements for
文摘Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant,the first commercial heavy water reactor nuclear power plant in China,was the biggest trade project performed between the governments of China and Canada.As the owner,the Third Qinshan Nuclear Power Company(TQNPC)persisted in independent innovation management during the project construction,commissioning and self-dependent operation,efficiently realizing the three controls of the project,i.e.quality control,schedule control and investment control,and persisted in technical improvement on the basis of digestion and absorption of CANDU-6 technology to improve the unit safety and reliability.The project construction practice has helped China's nuclear power project management to becomeprogrammed,computerized,standardized and internationalized management from the existing basis.After completion of the project,with unit safe and steady operation as the prerequisite,TQNPC performed several technical modifications and innovations to continuously improve the unit performance.In the area of staff development,TQNPC paid much attention to cultivation of corporate culture,strengthed staff training and built up a good circulating mechanism with staff training and project construction promoting each other.Further to "Zero Breakthrough" and a new step forward of locolization successfully realized in Qinshan Nuclear Power Plant and Nuclear Power Qinshan Joint Venture Company,the improvement and developemnt of nuclear power project management level in Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant provided reference for promotion of nuclear power development in China and standardized management of introducing large imported project.
文摘Power generating equipment supply contract for Huaneng Nantong Power Plant Phase Ⅱ project affiliated to Huaneng International Electric Power Stock Company Ltd. was signed at the People’s Great Hall on June 28, 1996, Shi Dazhen, Minister of Electric Power, Ye Qing, Vice-chairman of the State Planning Commission, Zhang Youcai, Vice Minister of Finance and
文摘China and Canada nailed down a deal to build the third phase of the Qinshan Nuclear Power Plant in Zhejiang Province in East China on Nov. 26, 1996. The contract was signed in Shanghai by China National Nuclear Corp (CNNC) and Atomic Energy of Canada Ltd(AECL). AECL will construct two 700 MW heavy water reactors for the Chinese nuclear power plant.
文摘The paper reports some technical solutions, which suggested or used for increasing of environmental protection during accidents at NPPs. For NNPs with two protective shells and pressure release system such as WWER-1000 a comprehensive, passive-mode environmental protection system of decontamination of the radioactive steam-air mixture from the containment and the intercontainment area was suggested. This system includes the “wet” stage (scrubbers, etc.), the “dry” stage (sorption module), and also an ejector, which in a passive mode is capable of solving the multi-purpose task of decontamination of the air-steam mixture. For WWER-440/230 NPPs three protection levels: 1) a jet-vortex condenser;2) the spray system;3) a sorption module were suggested and installed. For modern designs of new generation NPPs, which do not provide for pressure release systems, a new passive filtering system together with the passive heat-removal system, which can be used during severe accidents in case all power supply units become unavailable, was proposed and after modernization was installed at the KudanKulam NPP (India).
基金the National High-Tech Research and Development Program of China(Nos.2012AA03A507 and 2012AA050901)the Na-tional Science and Technology Major Project of China(No.2011ZX06004)
文摘Phase field simulations of phase separation in Fe-Cr binary alloys were performed by using the Cahn-Hilliard diffusion function. A new mobility model in relation to aging temperature and Cr content was used in the simulations. Two alloys of Fe-30at%Cr and Fe-35at%Cr were investigated at two different aging temperatures of 573 and 673 K. The phase separation kinetics was found to consist of three stages: wavelength modulation, amplitude increase, and coarsening of Cr-enriched regions. A higher thermal aging temperature accelerated the phase separation and increased the wavelength of concentration fluctuation. While the effect of Cr content on the phase separation kinetics was slight, Fe-Cr alloys with a higher Cr content were found to generate a larger number and a finer size of Cr-enriched regions. The simulation results provide consultation for design and safe operation of duplex stainless steel pipes in nuclear power plants.
文摘Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low cost simplified innovative separator using lattice core configuration is proposed where swirling is caused by the orthogonal driving flow. The performance of the separator has been assessed numerically with the commercial CFD code FLUENT 14.0. The numerical analysis is compared with the experiment. The geometry and flow conditions are chosen according to the experiment. In the analysis, standard k – e and realizable k – e turbulence models are implemented. The prediction of maximum air void fraction with realizable k – e model was almost the same as input air void fraction but the void fraction computed by standard k – e model was compared better with the experimental results than the realizable k – e model. Some discrepancies in flow pattern between the experimental and simulation results are observed which might be due to the difference of nozzle shape. However, a more detailed model is necessary to arrive at the final conclusion.
基金Project Supported by National Natural Science Foundation of China(No.51877089).Research on the mechanism and fault ride-through integrated strategies of an active power router in hybrid AC and DC distribution grids.
文摘The Floating nuclear power plant grid is composed of power generation,in-station power supply and external power delivery.To ensure the safety of the nuclear island,the in-station system adopts a special power supply mode,while the external power supply needs to be adapted to different types of external systems.Because of frequent single phase-ground faults and various fault forms,the fault line selection protection should be accurate,sensitive and adaptive.This paper presents a fault line selection method in cooperation with multi-mode grounding control.Based on the maximum united energy entropy ratio(MUEER),the optimal wavelet basis function and decomposition scale are adaptively chosen,while the fault line is selected by wavelet transform modulus maxima(WTMM).For high-impedance faults(HIFs),to enlarge the fault feature,the system grounding mode can be switched by the multi-mode grounding control.Based on the characteristic of HIFs,the fault line can be selected by comparing phase differences of zero-sequence current mutation and fault phase voltage mutation before and after the fault.Simulation results using MATLAB/Simulink show the effectiveness of the proposed method in solving the protection problems.