In areas with seasonal freezing,when the tunnel lining concrete is saturated with water infiltrating the interior,the lining and the surrounding rocks will simultaneously freeze.However,the current calculation of the ...In areas with seasonal freezing,when the tunnel lining concrete is saturated with water infiltrating the interior,the lining and the surrounding rocks will simultaneously freeze.However,the current calculation of the frost heaving force fails to consider the synchronous damage to the lining and surrounding rocks under freeze-thaw cycles.Therefore,as per the elastic calculation model of the frost heaving force and model of steady-state heat transfer of circular tunnels,this study introduces the frost heaving rate of lining and surrounding rocks.First,the analytical solution of frost heaving force is obtained for simultaneous frost heaving of lining and surrounding rocks under any steady-state temperature field.Then,based on the fracture theory and meso-damage mechanics,the damage variables of lining and surrounding rocks under freeze-thaw cycles are extracted,representing their elastic modulus and porosity.Finally,the formula of frost heaving force for synchronous damage to the lining and surrounding rocks at any steady-state temperature field is obtained.The calculation results demonstrate that the lower the temperature inside the lining,the greater the frost heaving force.With the increasing number of freeze-thaw cycles,frost heaving force tends to gradually increase initially,reaching a peak value at 85 freeze-thaw cycles,decreasing to 80%of the peak value at 140 cycles before reaching a constant value.The lining participates in frost heaving,increasing the frost heaving force.The initial increase rate of frost heaving force is 15.7%.Changing the fitting coefficients s1 and s2 of the lining and surrounding rocks can effectively control the magnitude of the frost heaving force in the tunnels.展开更多
It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analy...It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering.展开更多
Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding ro...Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding rock.Thus,the safety of the tunnel lining in weak strata is strongly correlated with time.In this study,we developed an analytical method for determining the time-dependent pressure in the surrounding rock and lining structure of a circular tunnel under a hydrostatic stress field.Under the proposed method,the stress–strain relationship of the fractured surrounding rock is assumed to conform to that of the Burgers viscoelastic component,and the lining structure is assumed to be an elastomer.Based on these assumptions,the viscoelastic deformation of the surrounding rock,the elastic deformation of the lining structure,and the coordinated deformation between the surrounding rock and lining structure were derived.The proposed analytical method,which employs a time-dependent safety coefficient,was subsequently used to estimate the durability of the lining structure of the Foling Tunnel in China.The derived attenuation curve of the safety coefficient with respect to time can assist engineers in predicting the remaining viable life of the lining structure.Unlike existing analytical methods,the method derived in this study considers the time dependency of the interaction between the surrounding rock and tunnel lining;hence,it is more suitable for the evaluation of lining lifetime.展开更多
In order to solve the problem of large deformation at the intersection of deep large section soft rock roadway,this paper takes the intersection of kilometer-deep roadway in the Wanfu Coal Mine as an engineering examp...In order to solve the problem of large deformation at the intersection of deep large section soft rock roadway,this paper takes the intersection of kilometer-deep roadway in the Wanfu Coal Mine as an engineering example and applies Negative Poisson’s Ratio(NPR)steel anchor cable in roadway support for the first time.By combining numerical simulation indoor test,theoretical analysis and field test,the deformation mechanism of surrounding rock at the intersection of deep-buried roadway was analyzed,and the control strategy with micro NPR steel anchor cable as the core was put forward.Through numerical simulation,the numerical analysis model of roadway intersection with different intersection angles and excavation sequence was constructed,and the impact of two key variables of rake angle and excavation sequence on the stability of surrounding rock at roadway intersection was studied.The optimal dip angle is 90°and the optimal excavation sequence was determined as pump house-pump house passage-substation.The mechanical properties of the micro-NPR steel anchor cable were studied through the static tensile test in the laboratory.The results showed that the micro-NPR steel anchor cable showed high constant resistance,uniform tensile,no yield platform,and no obvious necking phenomenon during breaking.Through theoretical derivation,it was calculated that the vertical stress of roadway intersection is 45 MPa,and the bearing capacity of superposed arch composed of micro NPR steel anchor cable is 1257 kN,which is enough to guarantee the overall stability of intersection.Support application test and monitoring were carried out on site,and it was verified that the combined support strategy of short and long micro NPR steel anchor cable has a good control effect on large deformation of surrounding rock at intersection,which provides a new support material and support means for the safety and stabilization control of surrounding rock at intersection.展开更多
In terms of special geological conditions of the Western Route of South-to-North Water Transfer Project, the classification method for surrounding rocks is discussed by combining with the construction method of tunnel...In terms of special geological conditions of the Western Route of South-to-North Water Transfer Project, the classification method for surrounding rocks is discussed by combining with the construction method of tunnel boring machine (TBM). The classification standard of surrounding rocks is put forward on the basis of physical simulations and engineering practices. Damage, deformation and evolution of surrounding rocks induced by TBM excavation are discussed. Meanwhile, the long-term deformation mechanisms and stability of surrounding rocks are also studied. On this basis, a three-dimensional constitutive model for interbedded sandstone slate and a fiat shell-joint element-foundation system for calculating internal forces of segment lining are established. The deformation features of surrounding rocks of deep and steep interbedded sandstone slate and their influences on internal forces of segment lining are presented. Finally, the design methods of segment lining constructed in deep and steep flysch are proposed.展开更多
The influence of the interaction between surrounding rock and lining on the long-term behaviour of a tunnel in service is significant.In this paper,we proposed a mechanical model of the circular lined tunnel with the ...The influence of the interaction between surrounding rock and lining on the long-term behaviour of a tunnel in service is significant.In this paper,we proposed a mechanical model of the circular lined tunnel with the alterable mechanical property under hydrostatic stress and radially inner surface pressure of the lining.The alterable mechanical properties of the surrounding rock and the lining are embodied by the changing of their elasticity modulus with service time and radial direction of the tunnel,respectively.The proposed mechanical model is successfully validated by comparison with the existing theoretical models and the numerical simulation,respectively.The influences of the main parameters of the proposed mechanical model,such as the radial power-law indexes and the time-varying coefficients of the surrounding rock and the lining,as well as the radially inner surface pressure of the lining,on the interface displacement and pressure between surrounding rock and lining are investigated.The research results can provide some valuable references for timely diagnosis and correct evaluation of the long-term behaviours of a tunnel in service.展开更多
Currently,model tests are increasingly being used to simulate the construction of mountain tunnels,but the support structure of the model tests does not show the composite lining,and the force laws of the composite li...Currently,model tests are increasingly being used to simulate the construction of mountain tunnels,but the support structure of the model tests does not show the composite lining,and the force laws of the composite lining are not yet clear.In this research,the force variation of composite lining under three cases in model tests of deep-buried tunnels were carried out with the surrounding rock grade and installation time as the variation factors.The test results reveal that:(1)The suitable method to reduce the contact load between the secondary lining and primary support is to enhance the primary support in the soft and weak surrounding rock.Correspondingly,for ClassⅢsurrounding rock and better quality of surrounding rock,the primary support can lag behind the excavation face a certain distance.(2)The axial forces of the bolts tend to rise with concentration of 0.4 kN-0.7 kN after the secondary lining was installed.(3)With or without two to three excavation cycles delayed,the load sharing ratio of the secondary lining of the Class III surrounding rock is less than 10%.Finally,the numerical simulation verifies the feasibility of the model tests.展开更多
基金the support of the National Natural Science Foundation of China(Grant Nos.42207199,52179113,42272333)Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)。
文摘In areas with seasonal freezing,when the tunnel lining concrete is saturated with water infiltrating the interior,the lining and the surrounding rocks will simultaneously freeze.However,the current calculation of the frost heaving force fails to consider the synchronous damage to the lining and surrounding rocks under freeze-thaw cycles.Therefore,as per the elastic calculation model of the frost heaving force and model of steady-state heat transfer of circular tunnels,this study introduces the frost heaving rate of lining and surrounding rocks.First,the analytical solution of frost heaving force is obtained for simultaneous frost heaving of lining and surrounding rocks under any steady-state temperature field.Then,based on the fracture theory and meso-damage mechanics,the damage variables of lining and surrounding rocks under freeze-thaw cycles are extracted,representing their elastic modulus and porosity.Finally,the formula of frost heaving force for synchronous damage to the lining and surrounding rocks at any steady-state temperature field is obtained.The calculation results demonstrate that the lower the temperature inside the lining,the greater the frost heaving force.With the increasing number of freeze-thaw cycles,frost heaving force tends to gradually increase initially,reaching a peak value at 85 freeze-thaw cycles,decreasing to 80%of the peak value at 140 cycles before reaching a constant value.The lining participates in frost heaving,increasing the frost heaving force.The initial increase rate of frost heaving force is 15.7%.Changing the fitting coefficients s1 and s2 of the lining and surrounding rocks can effectively control the magnitude of the frost heaving force in the tunnels.
基金Project(2000G033) supported by the S & T, Ministry of Railroad , China
文摘It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering.
基金supported by the National Natural Science Foundation of China(Nos.71631007 and 71771020)。
文摘Following tunnel excavation and lining completion,fractured surrounding rock deforms gradually over time;this results in a time-dependent evolution of the pressure applied to the lining structure by the surrounding rock.Thus,the safety of the tunnel lining in weak strata is strongly correlated with time.In this study,we developed an analytical method for determining the time-dependent pressure in the surrounding rock and lining structure of a circular tunnel under a hydrostatic stress field.Under the proposed method,the stress–strain relationship of the fractured surrounding rock is assumed to conform to that of the Burgers viscoelastic component,and the lining structure is assumed to be an elastomer.Based on these assumptions,the viscoelastic deformation of the surrounding rock,the elastic deformation of the lining structure,and the coordinated deformation between the surrounding rock and lining structure were derived.The proposed analytical method,which employs a time-dependent safety coefficient,was subsequently used to estimate the durability of the lining structure of the Foling Tunnel in China.The derived attenuation curve of the safety coefficient with respect to time can assist engineers in predicting the remaining viable life of the lining structure.Unlike existing analytical methods,the method derived in this study considers the time dependency of the interaction between the surrounding rock and tunnel lining;hence,it is more suitable for the evaluation of lining lifetime.
基金financial support for this work from the National Natural Science Foundation of China(Grant No.51874311,51904306)the Fundamental Research Funds for the Central Universities(Grant No.2022YJSSB03)。
文摘In order to solve the problem of large deformation at the intersection of deep large section soft rock roadway,this paper takes the intersection of kilometer-deep roadway in the Wanfu Coal Mine as an engineering example and applies Negative Poisson’s Ratio(NPR)steel anchor cable in roadway support for the first time.By combining numerical simulation indoor test,theoretical analysis and field test,the deformation mechanism of surrounding rock at the intersection of deep-buried roadway was analyzed,and the control strategy with micro NPR steel anchor cable as the core was put forward.Through numerical simulation,the numerical analysis model of roadway intersection with different intersection angles and excavation sequence was constructed,and the impact of two key variables of rake angle and excavation sequence on the stability of surrounding rock at roadway intersection was studied.The optimal dip angle is 90°and the optimal excavation sequence was determined as pump house-pump house passage-substation.The mechanical properties of the micro-NPR steel anchor cable were studied through the static tensile test in the laboratory.The results showed that the micro-NPR steel anchor cable showed high constant resistance,uniform tensile,no yield platform,and no obvious necking phenomenon during breaking.Through theoretical derivation,it was calculated that the vertical stress of roadway intersection is 45 MPa,and the bearing capacity of superposed arch composed of micro NPR steel anchor cable is 1257 kN,which is enough to guarantee the overall stability of intersection.Support application test and monitoring were carried out on site,and it was verified that the combined support strategy of short and long micro NPR steel anchor cable has a good control effect on large deformation of surrounding rock at intersection,which provides a new support material and support means for the safety and stabilization control of surrounding rock at intersection.
基金Supported by the National Key Technology R&D Program in the 11th Five-year Plan of China (2006BAB04A06)
文摘In terms of special geological conditions of the Western Route of South-to-North Water Transfer Project, the classification method for surrounding rocks is discussed by combining with the construction method of tunnel boring machine (TBM). The classification standard of surrounding rocks is put forward on the basis of physical simulations and engineering practices. Damage, deformation and evolution of surrounding rocks induced by TBM excavation are discussed. Meanwhile, the long-term deformation mechanisms and stability of surrounding rocks are also studied. On this basis, a three-dimensional constitutive model for interbedded sandstone slate and a fiat shell-joint element-foundation system for calculating internal forces of segment lining are established. The deformation features of surrounding rocks of deep and steep interbedded sandstone slate and their influences on internal forces of segment lining are presented. Finally, the design methods of segment lining constructed in deep and steep flysch are proposed.
基金Project(U1934210) supported by the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of ChinaProject(8202037) supported by the Natural Science Foundation of Beijing,China。
文摘The influence of the interaction between surrounding rock and lining on the long-term behaviour of a tunnel in service is significant.In this paper,we proposed a mechanical model of the circular lined tunnel with the alterable mechanical property under hydrostatic stress and radially inner surface pressure of the lining.The alterable mechanical properties of the surrounding rock and the lining are embodied by the changing of their elasticity modulus with service time and radial direction of the tunnel,respectively.The proposed mechanical model is successfully validated by comparison with the existing theoretical models and the numerical simulation,respectively.The influences of the main parameters of the proposed mechanical model,such as the radial power-law indexes and the time-varying coefficients of the surrounding rock and the lining,as well as the radially inner surface pressure of the lining,on the interface displacement and pressure between surrounding rock and lining are investigated.The research results can provide some valuable references for timely diagnosis and correct evaluation of the long-term behaviours of a tunnel in service.
基金the Scientific Research Project of Zhejiang Provincial Transportation Department(2021050)for the preparation of this manuscript。
文摘Currently,model tests are increasingly being used to simulate the construction of mountain tunnels,but the support structure of the model tests does not show the composite lining,and the force laws of the composite lining are not yet clear.In this research,the force variation of composite lining under three cases in model tests of deep-buried tunnels were carried out with the surrounding rock grade and installation time as the variation factors.The test results reveal that:(1)The suitable method to reduce the contact load between the secondary lining and primary support is to enhance the primary support in the soft and weak surrounding rock.Correspondingly,for ClassⅢsurrounding rock and better quality of surrounding rock,the primary support can lag behind the excavation face a certain distance.(2)The axial forces of the bolts tend to rise with concentration of 0.4 kN-0.7 kN after the secondary lining was installed.(3)With or without two to three excavation cycles delayed,the load sharing ratio of the secondary lining of the Class III surrounding rock is less than 10%.Finally,the numerical simulation verifies the feasibility of the model tests.