Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigate...Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.展开更多
An integrated process modelling system for simulating the microstructure evolution of Nb-microalloyed HSLA steel produced in CSP hot rolling process has been developed on the basis of the microstructure simulation and...An integrated process modelling system for simulating the microstructure evolution of Nb-microalloyed HSLA steel produced in CSP hot rolling process has been developed on the basis of the microstructure simulation and mechanical properties prediction technology. 3-D thermomechanical coupled finite element models for simulating hot strip rolling have been developed and the distribution of equivalent plastic strain through the thickness direction of the rolled material by CSP rolling was obtained. Thus the distribution of temperature, strain and strain rate through the thickness of the steel stocks, as well as the microstructure evolution during hot rolling of X60 line pipe steel strip has been investigated by using the developed integrated process modelling system. In addition, the determination and optimization of controllable process parameters during CSP hot strip rolling for the Nb-microalloyed X60 line pipe steel have been implemented, and control strategies such as adopting larger pass reduction in the first stand, arranging appropriate pass interval times and proper rolling speed, to reduce or eliminate mixed grain microstructure of Nb microalloyed strip in CSP processing have been proposed.展开更多
EBSD characterization of density and dispersion of high angle boundaries was carried out in niobium microalloyed steels of HTP base chemistry with 0.09 wt % Nb,which were thermo-mechanically processed under laboratory...EBSD characterization of density and dispersion of high angle boundaries was carried out in niobium microalloyed steels of HTP base chemistry with 0.09 wt % Nb,which were thermo-mechanically processed under laboratory conditions.Similar studies were carried out in higher grade (X-100 and above) line pipe steels with different chemistries,which were processed under simulation of industrial rolling conditions.The twin objectives are (i) to understand the effect of chemistry and processing parameters on the density and dispersion of high angle boundaries,and (ii) to correlate the microstructure and density of high angle boundaries with strength and fracture properties.The present studies confirm that refinement of austenite grain size prior to pancaking,large strain accumulation in austenite conditioning,alloy design with high hardenability and high cooling rates are essential to control high density and uniformity of dispersion of high angle boundaries in the final microstructure in order to achieve high strength,toughness,low DBTT and consistently 100% ductile shear in DWTT in thermo-mechanically rolled higher grade line pipe steels.展开更多
DANIELI has recently implemented its Coil Quality Estimator (DANIELI-CQETM) system to the Hot Strip Mill of United Metallurgical Company (OMK) at Vyksa,Russia.This system is developed for the purpose of real time asse...DANIELI has recently implemented its Coil Quality Estimator (DANIELI-CQETM) system to the Hot Strip Mill of United Metallurgical Company (OMK) at Vyksa,Russia.This system is developed for the purpose of real time assessment and control of mechanical properties for hot rolled coils.Mechanical properties such as strength,toughness,ductility and hardness are predicted over the entire length of a strip while it is processed.The property estimation is based on the final microstructure as predicted from a group of interconnected physically based metallurgical models,supplemented by Artificial Neural Network.The CQE system is used for prediction and control of properties of HSLA line pipe grades steel and other grades.The system performance,is judged by accuracy and reliability of prediction,has been compared with the physical material testing data from the plant.The results are found to be excellent.CQE is found useful for generation of test certificate of coil,quality assurance,process control,product development,and customer claim assessment.It is used for resource optimization for production,and other operational improvements such as reduction of downgrades.The present paper shares the results of CQE performance for prediction of HSLA line pipe grade steels.展开更多
基金financial support from the National Natural Science Foundation of China (Nos. 51004084, 51274170)the Doctoral Fund of Ministry of Education of China (No. 20105121120002)
文摘Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.
基金Item Sponsored by National Science and Technology Support Program for 11th Five-Year Plan of China (2006BAE03A08)International Science and Technology Cooperation Program(2006DFB72090)
文摘An integrated process modelling system for simulating the microstructure evolution of Nb-microalloyed HSLA steel produced in CSP hot rolling process has been developed on the basis of the microstructure simulation and mechanical properties prediction technology. 3-D thermomechanical coupled finite element models for simulating hot strip rolling have been developed and the distribution of equivalent plastic strain through the thickness direction of the rolled material by CSP rolling was obtained. Thus the distribution of temperature, strain and strain rate through the thickness of the steel stocks, as well as the microstructure evolution during hot rolling of X60 line pipe steel strip has been investigated by using the developed integrated process modelling system. In addition, the determination and optimization of controllable process parameters during CSP hot strip rolling for the Nb-microalloyed X60 line pipe steel have been implemented, and control strategies such as adopting larger pass reduction in the first stand, arranging appropriate pass interval times and proper rolling speed, to reduce or eliminate mixed grain microstructure of Nb microalloyed strip in CSP processing have been proposed.
基金CBMM,BrazilChinese Government scholarship+1 种基金Evraz Inc NA,ReginaNSERC,Canada
文摘EBSD characterization of density and dispersion of high angle boundaries was carried out in niobium microalloyed steels of HTP base chemistry with 0.09 wt % Nb,which were thermo-mechanically processed under laboratory conditions.Similar studies were carried out in higher grade (X-100 and above) line pipe steels with different chemistries,which were processed under simulation of industrial rolling conditions.The twin objectives are (i) to understand the effect of chemistry and processing parameters on the density and dispersion of high angle boundaries,and (ii) to correlate the microstructure and density of high angle boundaries with strength and fracture properties.The present studies confirm that refinement of austenite grain size prior to pancaking,large strain accumulation in austenite conditioning,alloy design with high hardenability and high cooling rates are essential to control high density and uniformity of dispersion of high angle boundaries in the final microstructure in order to achieve high strength,toughness,low DBTT and consistently 100% ductile shear in DWTT in thermo-mechanically rolled higher grade line pipe steels.
文摘DANIELI has recently implemented its Coil Quality Estimator (DANIELI-CQETM) system to the Hot Strip Mill of United Metallurgical Company (OMK) at Vyksa,Russia.This system is developed for the purpose of real time assessment and control of mechanical properties for hot rolled coils.Mechanical properties such as strength,toughness,ductility and hardness are predicted over the entire length of a strip while it is processed.The property estimation is based on the final microstructure as predicted from a group of interconnected physically based metallurgical models,supplemented by Artificial Neural Network.The CQE system is used for prediction and control of properties of HSLA line pipe grades steel and other grades.The system performance,is judged by accuracy and reliability of prediction,has been compared with the physical material testing data from the plant.The results are found to be excellent.CQE is found useful for generation of test certificate of coil,quality assurance,process control,product development,and customer claim assessment.It is used for resource optimization for production,and other operational improvements such as reduction of downgrades.The present paper shares the results of CQE performance for prediction of HSLA line pipe grade steels.